
PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

1/50

Production harmonizEd Reconfiguration

of Flexible Robots and Machinery

Horizon 2020 – Factories of the Future, Project ID: 680435

Deliverable 4.4

Guidelines and recommendations for reconfigurability

mechanisms for machinery and robots

Lead Author: Loughborough University

Dissemination level: PUBLIC

Date: 27/07/2018

Revision: 1.0

Ref. Ares(2018)4043588 - 31/07/2018

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

2/50

 Version history

Version Date notes and comments

0.1 01/04/2018 Report structure & table of content by LBORO

0.2 10/05/2018 Completion of Chapter One by LBORO

0.3 04/05/2018 Completion of Chapter Four by IPB

0.4 25/06/2018 Completion of Chapter Two and Three by LBORO

0.5 05/07/2018 First draft ready for proofreading and internal reviews (TUBS & IPB)

0.6 09/07/2008 Abstract and conclusion completed by LBORO

1.0 27/07/2018 Incorporation of feedback from TUBS

Author List:

Phil Ogun (LBORO)

Niels Lohse (LBORO)

Lennart Bueth (TUBS)

Sebastian Thiede (TUBS)

José Barbosa (IPB)

José Dias (IPB)

Nelson Rodrigues (IPB)

Adriano Ferreira (IPB)

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

3/50

Abstract

A reconfigurable manufacturing system (RMS) is designed at the outset to enable rapid change in

configuration (hardware, software and control components) in order to quickly and cost-

effectively adjust production capacity and functionality in response to dynamic market demands.

RMSs are usually designed around part families, meaning that each part family corresponds to a

specific configuration and the configurations evolve over time to provide the specific functions

and capacity needed to produce all the parts in a family within a given demand period.

In make-to-order environments, manufacturing systems will need to cope more with volume

fluctuations and product mix variations. The sequential approach to the manufacturing of parts in

different families may not be efficient over multiple generations of small batch sizes due to

increased idle time and changeover costs. Higher efficiencies can be gained through concurrent

manufacturing of multiple families. However, the configuration of the resources at every instant

of time could either impede or facilitate the system’s operability, productivity and

responsiveness. Concurrent manufacturing of parts from multiple families creates the problem of

when to reconfigure and which machines should be reconfigured to guarantee schedule feasibility

and improved performance of the system with respect to chosen performance measures.

The work reported in this report is focused on the development of a reconfiguration mechanism

for machines and robots in a make-to-order manufacturing environment. The method developed

in this task combines genetic algorithm (GA) optimisation with distributed multi-agent systems

(MAS). GA is used to generate an optimal or near-optimal operations execution and

reconfiguration schedule for a given demand period. The schedule contains information on

allocation of parts and operations to machines, as well as information on which machines should

be reconfigured and when the reconfiguration should take place. It is assumed that each part has a

due date and the tardiness costs per unit time is known. Also, the efforts required to change a

machine from one configuration to the other is known. The goal of the model is to minimise

weighted sum of reconfiguration and tardiness costs. The reconfiguration cost can be adjusted to

control the nervousness and the frequency of reconfiguration.

An agent-based reconfiguration mechanism for the logical re-organization of micro-flow

production cells is also developed. Reconfigurations are triggered according to the schedule

generated by the planning and scheduling model. The multi-agents direct the actual execution of

the reconfiguration processes to achieve resiliency. Although the developed tool and methods

have been designed with consideration for the GKN use case, they can be generalised to any kind

of plant layout.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

4/50

Table of Contents

1. INTRODUCTION ... 7

1.1. STRUCTURE OF THE REPORT ... 7

1.2. PROBLEM DEFINITION .. 7

1.3. AIMS AND OBJECTIVES .. 9

2. REQUIREMENTS SPECIFICATION AND SYSTEM ANALYSIS ... 10

2.1. THE PERFORM SYSTEM ARCHITECTURE .. 10

2.2. HYBRID GA AND AGENT-BASED RECONFIGURATION ... 11

2.3. FRAMEWORK FOR LINKING ENTERPRISE BUSINESS LOGIC AND CONTROL LAYERS TO OPERATIONS MANAGEMENT LAYER 13

2.4. PERFORMML DATA MODEL EXTENSION .. 15

2.5. PLANT LAYOUT .. 19

3. RECONFIGURATION PLANNING AND SCHEDULING MODEL .. 22

3.1. PROBLEM FORMULATION .. 22

3.2. GENETIC ALGORITHM MODEL .. 25

4. AGENT-BASED RECONFIGURATION MECHANISM ... 35

4.1. MULTI-AGENT SYSTEM (MAS) TO SUPPORT RECONFIGURATION .. 35

4.2. AGENT-BASED ARCHITECTURE .. 36

4.3. PLUG-IN AND PLUG-OUT MECHANISMS ... 40

4.4. DEPLOYMENT OF THE AGENT-BASED RECONFIGURATION MECHANISM ... 42

5. CONCLUSIONS .. 47

REFERENCES ... 48

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

5/50

1. List of Figures

Figure 1 Overall PERFoRM System Architecture ... 10

Figure 2 Hybrid centralised and agent-based reconfiguration planning and execution system 12

Figure 3 Framework for linking MOM to business logic and control layer ... 14

Figure 4 PERFoRMML Data model extension for Task 4.4 .. 15

Figure 5 Data consumption through the middleware ... 18

Figure 6 Micro-flow cell ... 19

Figure 7 Hybrid micro-flow cell and functional plant layout ... 20

Figure 8 Part flow through the micro-flow cells and workstations ... 21

Figure 9 Ideal versus assumed reconfiguration time .. 25

Figure 10 Internal architecture of the agents ... 36

Figure 11: Behaviour model for the Process Agent... 37

Figure 12: Behaviour model for the Robot Agent ... 39

Figure 13: Sequence diagram for the plug-in of a process module .. 40

Figure 14: Sequence diagram for the plug-out of a process module .. 41

Figure 15 The JADE architectural elements... 43

Figure 16 Interfacing agents with physical hardware devices using OPC-UA ... 44

Figure 17 Topology of the micro-flow cell represented using PERFoRMML ... 47

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

6/50

2. List of Tables

Table 1 Part operations and resource configurations data ... 26

Table 2 Chromosome representation for operation execution and resource configuration 29

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

7/50

1. Introduction

1.1. Structure of the Report

This report contains the outcome of Task 4.4, titled “Guidelines and recommendations for

reconfigurability mechanism for machinery and robots”. There are four main sections in the

report. Section 1 is the introductory section, which contains the problem definition and the

objectives of this report. Section 2 contains requirements specification and system analysis. The

details of the reconfiguration tools and methods developed in this task using genetic algorithm

and multi-agent systems are presented in Section 3 and 4 respectively.

1.2. Problem Definition

In today’s manufacturing environment, changes are inevitable and every agile manufacturing

system must be able to respond quickly to such dynamic and unpredictable changes without

significant impact on production efficiency, quality and overall costs. Achieving manufacturing

agility is very crucial in highly competitive and customer-driven markets, where minor

deterioration in production performance and product delivery may affect the manufacturers

reputation and long-term survival. The class of systems that are designed at the outset for rapid

adaptability in response to market or intrinsic system changes is known as the reconfigurable

manufacturing systems (RMS).

The aim of RMS is to achieve rapid modification and quick integration of new functions into

existing systems using basic process modules [1]. One of the key enabling characteristics of a

reconfigurable system is modularity. In RMS, modular blocks are used to achieve the required

system functionality to produce a part family. A distinguishing feature of an RMS is that its

configuration evolves over time to provide the specific functionalities and capacity needed for

every demand period. Customised flexibility is provided through scalability and reconfiguration

as and when needed to meet market requirements instead of the fixed general flexibility provided

by flexible manufacturing systems (FMS) [2]. An RMS can be easily reconfigured at system,

cell machine or controller levels. At system level and cell levels, the layout of the plant can be

changed completely by adding or removing machines from the plant. At machine or controller

levels, the structure and process capabilities of a machine may be adjusted by simply removing,

adding or changing the constituent hardware and software modules of the machine (e.g. spindles

and axes, tool magazines, controllers) [3].

In RMS, parts are grouped into families, and a certain mix and volume of parts within a family

corresponds to a specific configuration of the RMS. By designing RMSs around part families, the

manufacturing system can respond to changes in families in a timely and cost-effective fashion.

The fundamental idea behind part families is to group components that require similar operations

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

8/50

into the same family, so they can be manufactured in a fixed system configuration. The

configuration of an RMS is fixed during a demand period and is reconfigured at the end of the

demand period based on changes in the market demand and the capacity management policy

adopted by the enterprise [4]. That is, the system is initially configured to manufacture parts in a

given family within a certain time horizon. Once it is finished, the system is reconfigured to

manufacture parts from the next family, and so forth. For every change in configuration,

changeover costs are incurred, and certain length of production time could be loss depending on

how long it takes to complete the changeover operation.

The effectiveness of an RMS depends on the optimal grouping of parts into families. Several

techniques have been designed for grouping parts into families and to determine the

corresponding systems’ configurations [5, 6, 7]. The key factors that are generally considered in

part grouping are changeover costs, costs per unit time of idle and/or underutilised resources [5].

In make-to-order environments, the sequential approach to the manufacturing of parts in different

families may not be efficient over multiple generations of small batch sizes (short cycle time) due

to increased idle time and changeover costs. Higher efficiencies can be gained through concurrent

manufacturing of multiple families. However, the configuration of the resources at every instant

of time could either impede or facilitate the system’s operability, productivity and

responsiveness. Concurrent manufacturing of parts from multiple families creates the problem of

when and which resources should be reconfigured to guarantee schedule feasibility and improve

the performance of the system with respect to chosen performance measures.

The reconfiguration mechanism developed in Task 4.2 is an extension of the planning and

scheduling mechanism developed in Task 4.2 [8] for a combination layout (functional + cellular)

production system. The reconfiguration tool combines genetic algorithm (GA) optimisation with

distributed multi-agent systems (MAS) to achieve optimal reconfiguration plan and resilient

changeover process. GA is used to generate a system-level operations execution and

reconfiguration schedule, which defines the changeover actions that should be carried out and the

time of execution. Distributed multi-agents representing robots and process modules are then

used to direct the actual execution of the reconfiguration plan at cell and/or machine level. One of

the key issues to be addressed in this task is how to define the thresholds and nervousness control

parameters for balancing the frequency of reconfiguration.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

9/50

1.3. Aims and Objectives

The aim of Task 4.4 is to develop mechanisms for system level and machine level

reconfiguration. The objectives towards the achievement of this aim are:

 To define a structure for linking reconfiguration planning and scheduling layers of

production systems to higher and lower level layers

 To develop a strategy for optimal assignment of production tasks to resources and

reconfiguration planning to meet the needs of coevolving part families in a reconfigurable

manufacturing system

 To define thresholds for triggering reconfiguration, which will guarantee that

reconfiguration occurs only when needed and not make the system too nervous. The key

issues to be addressed are to determine the resources to be reconfigured and when the

reconfigurations should take place

 To develop a distributed agent-based architecture control architecture, which uses

negotiations among agents to achieve seamless and dynamic reconfiguration (quick

changeover) at cell and/or machine level.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

10/50

2. Requirements Specification and System Analysis

2.1. The PERFoRM System Architecture

The PERFoRM system architecture for seamless production system reconfiguration is based on a

network of distributed hardware devices and software applications [9]. This architecture

addresses different ISA-95 levels, exposing their functionalities as services and are

interconnected in a transparent manner by using an industrial middleware (Figure 1). The

middleware is a distributed, configurable and extendable service-based integration platform that

aims to guarantee a transparent, secure and reliable interconnection of the heterogeneous

hardware devices and software applications developed in the PERFoRM ecosystem. An

important innovation of this platform is its distributed nature instead of the centralized ones that

are found nowadays and can act as a single point of failure as well as a limitation for the system

scalability.

Figure 1 Overall PERFoRM System Architecture

Legend:

Wrapper

Standard Interface
for Service

Technology Adaptor

Legacy Tool

PERFoRM tool

S

S

ERP

S

S

MES SCADA

S

Data

analytics

S

Data

visualization

S

Storage

SS

Simulation Scheduling

S

S

Production

component

S

HMI

S

Production

component

S

Smart production

component

Intelligence

module

S

S

Workflow

model

Orchestration

engine

Composed production

component

Production

component

Intelligence

module

S
S

S

Middleware Service Registry

Service ConsumerService Provider

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

11/50

The PERFoRM architecture uses standard integration interfaces as the main drivers for

pluggability and interoperability, to enable seamless and transparent connection between devices

and software applications. Manufacturing companies currently use legacy and heterogeneous

systems for the management and the execution of their production process. The innovative

architecture proposed in the PERFoRM project can gain wide-spread adoption in the industry

only if it is possible to integrate with legacy systems. For this reason, technology adapters (Figure

1) are key elements to connect legacy systems to the PERFoRM middleware and to transform the

legacy data model into the standard interface data model defined in Task 2.3 [10]. In this way, the

technological adapters are only necessary when there is the need to connect a legacy component

(e.g. an existing database or robot) to the PERFoRM system.

In addition to the standard interfaces, a standardized manufacturing data model is adopted in

PERFoRM. The data model covers the semantic needs associated to each manufacturing entity.

In this context, machinery level and the backbone level abstraction layers are considered. The

machinery level covers mainly L1 (automation control) and L2 (supervisory control) layers. The

data backbone level covers L3 (manufacturing operations management) and L4 (business

planning and logistics).

At a lower level, robots and automation machinery need to be empowered with intelligence and

higher processing capabilities to run more complex algorithms, allowing them to process higher

amount of data to support seamless reconfiguration of the system and the achievement of self-*

properties (e.g. self-adaptation, self-diagnosis). The amount of data being generated in shop floor

plants is increasing at a very high rate. The proper analysis, locally (at the edge) and globally (at

the cloud), of the collected data assumes a crucial aspect, generating new knowledge that can be

used to detect trends, deviations and possible problematic situations in a timely manner.

2.2. Hybrid GA and Agent-Based Reconfiguration

Reconfiguration planning in concurrent manufacturing of parts from multiple families is an NP-

hard combinatorial optimisation problem. GA is effective in solving such problems especially

when the amount of input data is large, and the rate of exponential data growth for discrete

optimisation grows linearly [11]. Although GA cannot guarantee a globally optimum solution in

polynomial time, it is able to provide near optimal solutions within a shorter space time compared

to other deterministic algorithms for search space optimisation. One of the characteristics of RMS

is convertibility, which is the ability to quickly adjust the functionality of the system and controls

to suit new production requirements. However, decisions regarding how to deal with exceptions

in the reconfiguration process are complex. Multi-agent systems have shown great potentials in

dealing with dynamic situations. In this task, agents are used to manage the reconfiguration

schedules produced by the optimiser because complex decisions can be made through the synergy

resulting from the reasoning and negotiation mechanisms of the agent (Figure 2).

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

12/50

Figure 2 Hybrid centralised and agent-based reconfiguration planning and execution system

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

13/50

2.3. Framework for Linking Enterprise Business Logic and Control Layers to

Operations Management Layer

The manufacturing industry is now flooded with innovative ideas and concepts (Industry 4.0,

Industrial Internet of Things, cyber-physical systems), which have brought new challenges and

opportunities across the industry. ISA-95 framework defines a series of interconnecting

functional modules, each with a specific role and clearly defined interfaces for inter-module

communication. However, big data and IIoT are poised to render the traditional ISA-95

framework for linking enterprise business applications, operations management and process

control layers of manufacturing systems obsolete. Therefore, the traditional manufacturing

execution |systems (MES) are evolving to manufacturing operations management (MOM)

technologies with built-in intelligent decision-making capabilities. MOMs are designed to

address planning and scheduling problems, execution and control, performance analysis and

operational intelligence.

One of the limitations of the current MOMs is that they are designed for centralised planning and

scheduling systems. It is generally known that centralised planners and schedulers are suitable to

static environments, whereas most real-world environments are characterised by unexpected

disruptions and contingencies such as machine breakdowns, stochastic incoming jobs and

changes in due dates. In recent years, multi-agent technology has been adopted for creating test

beds for the examination of various planning and scheduling methods in dynamic environments

[12, 13, 14].

Although it has been proven that agent-based schedulers provide better overall performance in

environments that require reconfigurability, flexibility and reliability, the technology has not

gained much industrial adoption and deployment. This is due in part to the lack of support for

distributed systems in current MESs and MOMs. In order to facilitate the adoption of agent-based

technology, a new structure for linking the reconfiguration planning and scheduling layers of

production systems (MOM or MES) to higher and lower level layers needs to be defined. The

proposed framework for linking MOMs to the enterprise business logic and control layers is

shown in Figure 3.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

14/50

Figure 3 Framework for linking MOM to business logic and control layer

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

15/50

2.4. PERFoRMML Data Model Extension

A standardised data model for the PERFoRM project has already been created in WP2.

However, the model is not adequate for the requirements of Task 4.4. The following data model

is an extension to the default PERFoRMML. The class diagram for the model is shown in Figure

4. Data is supplied to the reconfiguration service through the middleware (Figure 5).

Figure 4 PERFoRMML Data model extension for Task 4.4

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

16/50

Operation: The Operation class is a representation of a manufacturing operation that can be

performed in the shop floor

 ID: A unique identifier for an operation

 Name: Name of the operation

 OperationType: Type of the operation (Cellular, Non-Cellular)

Workstation: The Workstation class is a representation of an area in which a group of resources

can be arranged

 ID: A unique identifier for a workstation

 Description: Description of the workstation

Resource: The Resource class is a representation of an actual machine or equipment located in a

workstation

 ID: A unique identifier for a resource

 Name: Name of the resource

 ResourceType: The type of resource (Machine Tool or Micro-Flow Cell)

 Workstation: The workstation in which the resource is physically located

PartFamily: The PartFamily class is a representation of a part family

 ID: A unique identifier for a part family

 Description: Meaningful description of the part family

Part: The Part class is a representation of a part to be manufactured

 ID: A unique identifier for a part

 Name: Name of the part

 PartFamily: The associated family the part belongs to

 ReleaseTime: The time the part enters the system

 DueTime: The time the part is due

 UnitTardinessCosts: The unit time lateness costs of the part

 OperationSequence: The ordered list of operations for producing the part

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

17/50

SequenceItem: The SequenceItem class is a representation of a part-specific operation

 Part: The associated pat

 Operation: The associated operation

 SequenceNo: The execution order of the operation for the part

Configuration: The Configuration class is a representation of a possible configuration of a

resource

 ID: A unique identifier for a configuration

 Description: Meaningful description of the configuration

 PartFamily: The associated part family for the configuration

 Resource: The associate resource for the configuration

 Operations: The list of operations that the associated resource can perform when it is in

the configuration

ReconfigurationEffort: The ReconfigurationEffort class defines the time and costs of changing a

resource from one configuration to the other.

 FromConfiguration: The current configuration of a resource

 ToConfiguration: The target configuration of a resource

 Duration: The time it takes from start to finish of the configuration process

 OtherCosts: Other costs incurred during reconfiguration.

OperationExecution: The OperationExecution class defines the process parameters for a part and

operation on a resource

 Part: The associated part

 Operation: The associated operation

 Resource: The associated resource

 Configuration: The associated configuration of the resource

 ProcessingTime: The time for processing the part on the resource in the specified

configuration

ReconfiurationItem: The ReconfiurationItem class is a representation of a reconfiguration item

generated by the optimiser

 Resource: The associated resource

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

18/50

 FromConfiguration: The associated current configuration

 ToConfiguration: The associated target configuration

 StartTime: The start time of the reconfiguration process

 FinishTime: The finish time of the reconfiguration process

ScheduleItem: The ScheduleItem class is a representation of a schedule item generated by the

optimiser

 Part: The associated part

 Resource: The associated resource

 StartTime: The time the part seizes the resource

 FinishTime: The time the part releases the resource

The data required for reconfiguration is provided by the middleware as shown in Figure 5. The

reconfiguration plan generated by the planning tool is used by the agents to direct reconfiguration

at the micro-flow cell and machine levels.

Figure 5 Data consumption through the middleware

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

19/50

2.5. Plant Layout

Three categories of manufacturing flexibilities are identified in T4.2 namely routing, process and

machine flexibilities. However, the machine flexibility, which is the ability of a machine to

perform a variety of operations, was not addressed in Task 4.2 [8]. It was assumed that once

machines have been configured for a set of part families, they cannot be changed during a

schedule execution. In addition to the process and routing flexibilities, the reconfigurability of

the machines is also considered in Task 4.4.

The key characteristics of an RMS are modularity, integrability, customised flexibility,

scalability, convertibility and diagnosability. These characteristics have been considered in the

design of the micro-flow cell concept presented by the GKN use case. The micro-flow cell

(Figure 6) consists of a Programmable Logic Controller (PLC) for communication and control, a

Human Machine Interface (HMI), a robot system for part handling and a number of process

modules. Each process module is controlled by a PLC. The arrangement of resources in the plant

is shown in Figure 7 and the flows of parts through the resources are shown in Figure 8.

Figure 6 Micro-flow cell

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

20/50

Figure 7 Hybrid micro-flow cell and functional plant layout

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

21/50

Figure 8 Part flow through the micro-flow cells and workstations

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

22/50

3. Reconfiguration Planning and Scheduling Model

This chapter is focused on the design of the planning and scheduling model for the reconfigurable

manufacturing system using genetic algorithm.

3.1. Problem Formulation

The goal is to find the best production and reconfiguration schedules that will minimise weighted

sum of reconfiguration and tardiness costs. The threshold level for triggering reconfiguration and

nervousness control is indirectly defined using the cost of changing a resource from one

configuration to the other. A low reconfiguration cost compared to the tardiness cost will make

the system too nervous and vice-versa.

3.1.1. Model Inputs

The following inputs are required by the reconfiguration planning and scheduling model:

Plant Data

R: a set of resources in the plant

r: number of resources in the resources set

P: a set of parts to be manufactured

p: number of parts in the parts set

O: a set of operations that can be performed in the plant

F: a set of all possible part family grouping

Resource Data

i: index of resource, i = 1 ……… r

C: the set of possible configurations of resource i

m: the index of the m
th

configuration

OCm: the set of operations in the m
th

 configuration OCm ⊆ O

tmn: the reconfiguration time from m
th

 to n
th

 configuration

cmn: the reconfiguration cost from m
th

 to n
th

 configuration

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

23/50

Parts Data

j: index of part, j = 1 ……. p

fj: the family that part j belongs to, fj ∈ F

rj: release time of part j

dj: due time of part j

cj: unit time tardiness cost of part j

Oj: ordered set of operations for manufacturing part j, Oj ⊆ O

okj: the k
th

operation of part j, okj ∈ Oj

Operation Execution Data

tkjim: the processing time of the k
th

 operation of the j
th

 part on the i
th

 resource in m
th

configuration

3.1.2. Model Outputs

The model produces the following outputs:

Operation Schedule

The schedule is a list of operations to be performed on a specific resource, at a specific

time and in a specific configuration. Each item in the list has the following parameters:

Pj: part

Ri: resource

Cm: configuration

t1: start time of the operation

t2: finish time of the operation

Reconfiguration Schedule

The reconfiguration schedule is a list of reconfigurations that are required for the

feasibility of the operation schedule.

Ri: resource

C1: from configuration

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

24/50

C2: target configuration

t1: start time of the reconfiguration

t2: finish time of the reconfiguration

3.1.3. Assumptions

The following assumptions are mode in the model:

 All resources (micro-flow cells and machine tools) are reconfigurable

 All resources are available at any time

 All parts are released at time rj = 0

 Parts visit micro-flow cells only once (Figure 8).

 A resource can only execute one operation at a time.

 There are no precedence constraints among operations of different parts

 The sequence of operation is predefined and cannot be modified i.e. operation okj must

be completed before operation o(k+1)j

 No operation preemption. i.e. an operation cannot be interrupted on a machine once

started until it is completed

 The system is not affected by stochastic events such as machine breakdowns (100%

availability), dynamic introduction of new parts, order cancellation, changes in parts

priorities, changes in parts mix and reworks due to quality issues

 There are no ramp-up and ramp-down periods during reconfiguration (Figure 9)

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

25/50

Figure 9 Ideal versus assumed reconfiguration time

3.2. Genetic Algorithm Model

Genetic algorithm is a heuristic search method used to find optimised solutions to search

problems based on the theory of natural selection and evolutionary biology. The method begins

with a population of individuals, which represents a set of potential solutions in the search space.

An individual in the population is assigned a fitness value according to a problem-specific

objective function. The individuals attempt to combine the good features in each parent in the

population using reproduction operators to construct offspring which are fitter than the previous

generations. Depending on the needs of the application, the procedure continues until an

acceptable solution is derived or until a certain number of generations have passed. The model

adopted in this task is based on the algorithm proposed by Du & Xiong [15] for a flexible job-

shop scheduling problem. The algorithm has been modified to account for the hybrid layout

scenario described in Section 2. The model is described using the information shown in Table 1.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

26/50

Table 1 Part operations and resource configurations data

Part Operation Resources

R1 R2 R3 R4 R5 R6 R7

 C11 C12 C21 C22 C31 C32 C41 C42 C51 C52 C61 C62 C71 C72

1

O11 - - - - 1 - 1 - - - - - - -

O12 1 - 1 - - - - - - - - - - -

O13 1 - 1 - - - - - - - - - - -

2 O21 - - - - - - - - - 1 - 1 - -

O22 - 1 - 1 - - - - - - - - -

O23 - 1 - 1 - - - - - - - - - -

O24 - 1 - 1 - - - - - - - - - -

3 O31 - - - - - - - - - 1 - 1 - -

O32 - 1 - 1 - - - - - - - - - -

O33 - 1 - 1 - - - - - - - - - -

O34 - 1 - 1 - - - - - - - - - -

4 O41 - - - - 1 - 1 - - - - - - -

O42 1 - 1 - - - - - - - - - - -

O43 1 - 1 - - - - - - - - - - -

O44 - - - - - - - - 1 - 1 - - -

5 O51 - - - - - - - - - - - - - 1

O52 - 1 - 1 - - - - - - - - - -

O53 - 1 - 1 - - - - - - - - - -

O54 - 1 - 1 - - - - - - - - - -

O55 - - - - - 1 - 1 - - - - - -

6

O61 - - - - - - - - - - - - 1 -

O62 1 - 1 - - - - - - - - - - -

O63 1 - 1 - - - - - - - - - - -

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

27/50

A matrix called the part-operation relation matrix, Mpo, is derived from Table 1. The matrix

represents the constraints between parts and operations. The parts and operations are placed along

the columns and rows respectively. If the element Mpo (k, j) = 1, then the operation in the k
th

 row

belongs to part in the j
th

 column.

𝑀𝑝𝑜 =

[

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1]

A second matrix called the operation-resource matrix, Mor, is also derived. It represents the

constraint model of relation between part operations and resources. The resources and operations

are arranged along the rows and columns of the matrix respectively. If the element Mor (i, k) = 1,

then the operation in the k
th

 column can be processed by the resource in the i
th

 row.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

28/50

𝑀𝑜𝑟 =

[

0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1
0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0]

The key elements of genetic algorithm are the type of chromosome representation that is used,

the crossover operator, mutation operator and the selection method. The details of the model

developed in this task are explained using the data shown in Table 1. A value of 1 in the

resource-configuration column indicates that the corresponding part operation can be performed

by the resource when it is in the corresponding configuration. From Table 1, there are seven

parts, grouped into two families. Each resource can be configured to process parts from the two

families (CR1 and CR2).

3.2.1. Chromosome Encoding

A chromosome is a symbolic representation of a feasible schedule. Most previously adopted

representations are one-dimensional but a 2-dimensional operation-based encoding is used for the

flexible scheduling and reconfiguration problem. The chromosome representation has two

components; operation sequence component (OS) and the resource-configuration selection

component (RS). The OS component values represent the sequence of operation while the RS

component values represent the resource that is selected to process the corresponding operation

and its configuration.

A valid chromosome for the problem in Table 1 is shown in Table 2. According to Table 1, there

are 23 total operations, so the length of the chromosome is 23. The genes of the OS component

are filled with random numbers generated from 1 to 23. The operations are scheduled in the order

of their values. The RS component values are obtained by choosing a resource configuration

from the set of available resource configurations for an operation during population initialisation.

For instance, C11, which is the part family 1 configuration of resource R1, has been selected to

process operation O44. C21, which corresponds to the second configuration of resource R1 could

also be chosen.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

29/50

Table 2 Chromosome representation for operation execution and resource configuration

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 11 2 20 8 3 19 10 15 7 14 1 18 17 12 9

MS C31 C21 C21 C62 C12 C12 C12 C52 C22 C22 C22 C41 C11 C11 C61

 O51 O52 O53 O54 O55 O61 O62 O63

OS 21 13 6 5 22 23 16 4

MS C72 C22 C22 C22 C42 C71 C11 C11

3.2.2. Chromosome Decoding

A decoding scheme is required to ensure that the chromosome produces a feasible schedule. The

chromosome decoding is described in the following steps: -

Step 1: Create and initialise the Mpo matrix

Step 2: Select the operation with the minimum value of OS and determine the part that the

operation belongs to. For instance, the operation with the minimum OS value in Table 2 is O34,

which belongs to part 3

Step 3: Search through the corresponding part column of matrix Mpo and select the first operation

with value equal to 1. This preserves the relative precedence constraints in the operations of the

same part. For instance, the operations in column 3 of matrix Mpo with values equal to 1 are O31,

O32, O33 and O34. The first operation is O31, so it is selected

Step 4: According to the selected part and operation, set the corresponding element of matrix Mpo

to 0. This effectively removes the operation from the matrix so that it will not be considered in

the subsequent iterations

Step 5: Get the resource the operation has been assigned to and its configuration. For instance,

operation O31 is assigned to resource 5 in configuration 2. If the most recent configuration of the

resource is different from the currently required configuration (i.e. configuration 2), then a

reconfiguration is required. Update the available time of the resource and the total

reconfiguration costs accordingly.

Step 6: Schedule the operation and update the resource available time and part ready time

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

30/50

Step 7: Repeat step 2 to 6 for the other operations in the chromosome.

A schedule generated by the above procedure is guaranteed to be feasible, so no repair

mechanism is required for the chromosomes. The sequence of operations and reconfigurations

after decoding the chromosome in Table 2 are given as follows:

Sequence of Operation

O31 – O11 – O21 – O61 – O51 – O52 – O32 – O22 – O41 – O23 – O12 – O42 – O53 – O33 – O34 – O62 – O43 –

O44 – O24 – O13 – O54 – O55 – O63

Reconfigurations

C71 – C72, C22 – C21, C12 – C11, C21 – C22, C62 – C61, C11 – C12, C22 – C21, C21 – C22, C41 – C42, C12

– C11

3.2.3. Initial Population Generation

Population initialisation is a crucial task in genetic algorithm because it affects the feasibility and

quality of the final solution. The initial population generation for the OS and RS components of

individuals are done in stages. The steps for creating each individual in the initial population are

as follows:

Step 1: Create an operation-machine matrix, Mor, and initialise based on the available resource

sets for each operation

Step 2: Create an array to hold the available time of all resources and initialise to 0

Step 3: Randomly fill the operation sequence component of the chromosome with values from 1

to 23 without any repetition

Step 4: For each gene in the chromosome, choose the resource with the shortest availability out of

the set of resources that can perform the operation represented by the gene. If there is a tie,

randomly select one

Step 5: Add the processing time of the operation on the resource to the available time of the

resource

Step 6: If the operation is in a micro flow cell, then reduce the available resources for performing

the remaining cellular operations of the part to the chosen micro-flow cell by setting the values of

the other resources in the same column to 0 in the Mor matrix.

Step 7: Repeat step 4 to 6 until all operations in the chromosome have been assigned.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

31/50

3.2.4. Fitness Evaluation

Fitness evaluation involves the definition of an objective function to be used for determining the

suitability of a chromosome for reproduction. The fitness function is defined as fit(c) = 1/fc,

where fc is the weighted sum of total tardiness and reconfiguration costs for the schedule

produced by the chromosome. Given a set of reconfigurations with associated costs

 Z = {𝑧1, 𝑧2 𝑧𝑦} (1)

 𝑓𝑐 = 𝛼𝑇𝑐 + 𝛽𝑅𝑐 (2)

 𝑇𝑐 = ∑𝑚𝑎𝑥(0, 𝐶𝑖 − 𝐷𝑖) × 𝑈𝑖

𝑝

𝑗=1

 (3)

 𝑅𝑐 = ∑ 𝑧𝑎

|𝑍|

𝑎=1

 (4)

where

α is the weight of total tardiness cost Tc

β is the weight of total reconfiguration cost Rc

Ci is the completion time of the i
th

 part

Di is the due time of the i
th

 part

Ui is the tardiness cost per unit time that the i
th

 part exceeds its due date

3.2.5. Genetic Operators

Selection Strategy: At each iteration, the best chromosomes are chosen for reproduction using the

elite selection method.

Crossover Operator:

The choice of crossover operator is very important in genetic algorithm. Crossover operators are

application and chromosome dependent. The crossover operator is applied to the operation

sequence components of a chromosome only, while the assignment of resources to operations is

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

32/50

preserved in the offspring. An ordered crossover operator is used so that relative order

information can be transmitted to the offspring. The crossover procedure is described as follows:

Parent 1

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 6 12 7 13 8 3 15 11 4 10 5 2 9 1 14

MS C31 C21 C21 C62 C12 C12 C12 C52 C22 C22 C22 C41 C11 C11 C61

Parent 2

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 3 9 1 13 4 7 12 14 11 10 6 15 8 2 5

MS C41 C11 C11 C52 C22 C22 C22 C62 C12 C12 C12 C41 C21 C21 C61

Step 1: Create two random crossover points and copy the consecutive alleles between the

points from the operation chromosome of the first parent into the first offspring

Step 2: Starting from the second crossover point in the second parent, copy the remaining

unused alleles from the second parent to the first offspring, wrapping around the list

Step 3: Copy the corresponding alleles from the resource selection chromosome of the first

parent into the first offspring

Step 4: Repeat step 1 to 3 with parent roles reversed to create the second offspring

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

33/50

Parent 1

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 6 12 7 13 8 3 15 11 4 10 5 2 9 1 14

MS C31 C21 C21 C62 C12 C12 C12 C52 C22 C22 C22 C41 C11 C11 C61

Parent 2

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 3 9 1 13 4 7 12 14 11 10 6 15 8 2 5

MS C41 C11 C11 C52 C22 C22 C22 C62 C12 C12 C12 C41 C21 C21 C61

Offspring 1

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 1 13 7 12 14 3 15 11 4 10 6 8 2 5 9

MS C31 C21 C21 C62 C12 C12 C12 C52 C22 C22 C22 C41 C11 C11 C61

Offspring 2

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O34 O41 O42 O43
O44

OS 13 8 3 15 4 7 12 14 11 10 5 2 9 1 6

MS C41 C11 C11 C52 C22 C22 C22 C62 C12 C12 C12 C41 C21 C21 C61

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

34/50

Mutation Operator:

Mutation operators are generally applied to introduce and maintain diversity from one

generation of a population of chromosome to the next, thereby preventing the evolutionary

process from being trapped in a local optimum. Mutation is applied to the operation sequence and

resource selection components of chromosomes as described in the following steps: -

Step 1: Choose two low probability threshold values for mutating the operation sequence and

resource selection components respectively.

Step 2: Loop through the chromosome from left to right and generate a random probability

value for each position.

Step 2a: If the randomly generated probability value is less than the resource selection

chromosome mutation probability, set the resource allele in that position to another randomly

selected resource from the available resources lists for that operation

Step 2b: If the randomly generated probability value is less than the operation sequence

chromosome mutation probability, then swap the operation sequence value in the position with

that of another randomly selected position. This should only be done for operations that are not

performed in a micro-flow cell. Otherwise, the whole part will have to be swapped.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

35/50

4. Agent-Based Reconfiguration Mechanism

The agent-based reconfiguration focuses on the logical re-organization of the reconfigurable

micro-flow production cells. This chapter detail the architecture as well as the description of the

reconfiguration mechanism through the dynamic and automatic plug-in and plug-out of the

modular processes. The reconfiguration is triggered according to the schedule received from the

planning and scheduling logic. The process modules are plugged and unplugged to fulfil the work

orders defined in the schedule. When an unpredictable event occurs, decisions are made by the

agents in real-time to establish corrective mechanisms for maintaining the stability and feasibility

of the pre-generated schedule.

4.1. Multi-Agent System (MAS) to Support Reconfiguration

This tool is built upon MAS principles, considering a society of distributed and autonomous

agents to regulate the re-organization procedure of the micro-flow cell. The MAS paradigm [16,

17], derived from the distributed artificial intelligence field, is pointed out as a suitable approach

to support flexibility, robustness and reconfigurability. The inherent characteristics of MAS can

easily support the micro-flow cell requirements, namely in terms of reconfigurability, scalability

and pluggability. The use of MAS principles in this tool can bring the following benefits:

 Scalability: the addition of new processes in the micro-flow cell is very simple in logical

terms, simply requiring the instantiation of developed agent class on the fly (with its

proper customization); note that there is no need for additional code from the point of

view of the agents, or also the need to stop, re-program and re-start the tool.

 Distributed data collection: the MAS approach allows to implement a distributed

approach for the collection of data from the process modules and robots supporting the

implementation of performance monitoring.

 Data persistence: this solution guarantees the persistence of the data in case of failure.

The agents store individually and locally the current cell configuration and its own status.

In case of breakdown, when the system is turned on, each individual agent accesses to the

local database to update the cell configuration and its own status.

 Cooperation: the interaction among multiple robots and process modules to exchange

information, regarding schedule and to execute their operations after a reconfiguration

procedure, is simplified by using MAS. Additionally, in case of multiple micro-flow cells,

the creation of a network of interconnected agents increases the seamless reconfiguration,

namely by reacting in real time to failures, rescheduling dynamically the system and

overcoming problems related to performance bottlenecks.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

36/50

 Plug and Produce: Plug and produce is a concept that allows resources to be quickly

added and removed from a manufacturing. The multi-agent system allows creation and

destruction of agents living in a population at runtime. Agents are created dynamically as

resources or parts are introduced into the manufacturing process and are destroyed when

removed.

4.2. Agent-based Architecture

The designed MAS-based system is composed by two types of agents, namely the “Robot Agent”

representing robot resources and the “Process Agent” representing process modules. The creation

of two types of agents increases the modularity and flexibility of the system, since the agents

have distinct functions, establishing in this way a similarity between the logical and the physical

levels, allowing the agents to have a better representation of the system. The robot agent is linked

with the cell configuration and safety procedures, while the process agent only cares with its

associated physical process. Aiming to keep the cell configuration updated during the

reconfiguration procedure, the process and robot agents need to interact, namely to exchange

information regarding the plug-in and plug-out of the process modules. The internal architecture

of these agents is illustrated in Figure 10.

Figure 10 Internal architecture of the agents

Each agent is managing the logical re-organization of its physical device, contributing for the re-

organization of the micro-flow-cell. The agents interconnect their physical counterparts, i.e. robot

controllers and PLCs, by getting data from OPC-UA (Open Platform Communications - Unified

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

37/50

Architecture) servers, acting as adapters to be PERFoRM compliant. The information collected

from the physical resources, regarding current configuration status and performance, is stored in

their local databases. The agents reason using the historical and current data to perform the

reconfiguration procedure and share information by exchanging messages among themselves

according to the FIPA-ACL (Foundation for Intelligent Physical Agents – Agent Communication

Language) communication language.

The behaviour of each type of agent is dependent of its role and objectives, being in this work

formalized using the Petri nets formalism [18]. Petri nets is a formal modelling tool adequate to

model and to analyse the behaviour of complex event-driven systems characterised as being

concurrent, asynchronous, stochastic and with high-level distribution. The Petri net behaviour

model for the Process agent is illustrated in Figure 11.

t10: exit t1: start t2: initializep1 p2
p3: ready

t3: subscribe

OPC-UA items

t6: plug out

p5: process active

t4: plug in

t5: notify robot

about plug in

{process}

p6: process inactive

p4: wait for

OPC-UA

notification

t7: notify robot

about plug out

{process}

p7: monitoring

t8: collect data

p8

t9: analyse

and send data

Figure 11: Behaviour model for the Process Agent

The process agents are created according to the catalogue of modular process modules that can be

used in the micro-flow production cell, being created one process agent for each physical process

module.

After the initialization phase, where the agent is parametrized according to the details of the

process module it represents, namely its name and OPC-UA server address, and subscribes some

process's parameters in the OPC-UA server, the agent enters in a sleep mode, waiting for an event

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

38/50

(as result of the initial subscription) notifying that its associated process is plugged-in. At this

stage, the agent switches to an active mode, updates its position and location within the micro-

flow production cell and notifies the robot agent responsible for this cell about its new state,

providing information regarding the process and its position. The same procedure is executed

when the process agent receives an event notifying that the process is plugged-out. This

mechanism allows the seamless reconfiguration of the cell in a distributed manner, since the

process agents are individually detecting when are plugging-in and -out and exchanging

information with each other and with the robot agents to maintain the proper knowledge about

the cell configuration.

In active mode, each process agent is also continuously collecting data related to the performance

of its process module, e.g., processing time, number of processed parts and status (idle or

execution). This data is analysed and aggregated and sent to an external Key Performance

Indicator (KPI) monitoring tool.

The Petri net behaviour model for the Robot agent is illustrated in Figure 12.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

39/50

t14: exit t1: start t2: initializep1 p2
p3: ready

t3: subscribe

OPC-UA items

t8: plug out

t9: msg arrived

t10: process

unplugged

t11: notify robot

about plug out

{process, position}

t7: notify robot

about plug in

{process, position}

t6: assigns the

process to the

position

p5: wait for process

(msg from process

agent)

t4: plug in

t5: msg arrived

p7

p6

p10

p9

p8: wait for process

(msg from process

agent)

p4: wait for

OPC-UA

notification
p11: monitoring

t12: collect data

p12

t13: analyse

and send data

Figure 12: Behaviour model for the Robot Agent

The robot agent is launched at the same time as the process agents, being created one robot agent

for each physical robot placed in the micro-flow production cell (usually, a micro-flow cell has

only one robot and only one robot agent is created, but if it contains more robots, additional robot

agents are created). After the initialization phase, similar to the one described for the process

agent, where the agent is parametrized according to the robot type, the agent remains in active

mode, monitoring the performance of its physical counterpart and waiting for an event, as result

of the initial subscription: a plug-in or plug-out of a modular process. When a process module is

plugged-in, the robot agent is automatically notified about the change in the cell configuration,

storing the info related to the plugged-in process and its location in its local database. This

information is assigned to the robot controller that should adapt itself to work with this new

modular process at this location, namely downloading the proper robot program and changing its

tools. A same procedure occurs when the robot agent receives an event notifying that a process is

plugged-out. In this case, the agent updates the unavailability of the process and informs the

robot controller that this process is not anymore active. After the reconfiguration of the micro-

flow production cell, the cell can return to the processing state, if the cell safety procedures are

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

40/50

guaranteed. In fact, aiming to ensure the safety, robot agents should check the information related

to the cell safety systems, e.g., light curtains and emergency stops, before allowing to return to

the normal processing operation.

4.3. Plug-in and Plug-out Mechanisms

As previously referred, process and robot agents need to interact to reach the seamless

reconfiguration procedure. For this purpose, the reconfiguration can be triggered by plugging in

and/or plugging out modular processes. Figure 13 describes the sequence diagram to reconfigure

the micro-flow cell due to the plug-in of a process module.

Robot
Agent

Process
Agent

OPC UA
Server

Human/
Automatic

writePosition()

notifyPosition()

writeProcess()

notifyProcess()

connected():true

Position
Active

Process
Plugged

subscribe():Process

subscribe():Position

S
u

b
s
c
ri
p

ti
o
n

 p
h

a
s
e

P
lu

g
-i
n

 p
h
a

s
e

Figure 13: Sequence diagram for the plug-in of a process module

This procedure is divided in two phases, namely the subscription phase and the plug-in phase. On

the subscription phase, the robot agent subscribes the cell positions related to its operation scope,

while the process agents subscribe their available process modules.

On the plug-in phase, the system is waiting for a reconfiguration, that occurs when the operator

plugs-in a process module into a specific position. When a position becomes active, by plugging-

in a process module, the robot agent is automatically notified (since it had subscribed this event)

that there is a process module incoming into that position. The process agent is also notified that

the process module associated to it is plugged, switching its status from sleep mode to active

mode and informing the robot agent (by sending a message), that the process it is connected. In

this way, the robot agent knows which process is plugged in each position.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

41/50

This connectivity can be done in two ways: automatically or manually. If the cell is equipped

with sensors that allows to know which positions are active, and the process modules have RFiD

(Radio-Frequency IDentification) tags that identifies themselves when attaching a position (e.g.,

using a RFiD reader), the process identification can be performed in automatic way. Otherwise,

this identification can be performed by the operator that plugs-in physically the process module

and inserts the position and the process identification through an HMI.

Independently of the physical connection approach, the process identification information is

stored in an OPC-UA server, which variables are subscribed by the several robot and process

agents. This allows separation between the agent-based system and the physical technological

implementation of the micro-flow production cell.

Regarding the plug-out of a process, a similar interaction is performed by the process and robot

agents, with the robot agent subscribing the position and the process agent the process modules

(Figure 14). When a process module is plugged-out, the robot agent is notified that there is a

process out-coming from that position and the process agent is notified that the process is being

unplugged. After receiving the notification, the process agent informs the robot agent that the

process is disconnected and switches its status to sleep mode. In this way, the robot knows

automatically which process module is not available anymore and which position becomes

inactive.

Robot
Agent

Process
Agent

OPC UA
Server

Human/
Automatic

writePosition()

notifyPosition()

notifyProcess()

connected():false

Position
Inactive

Process
Unplugged

subscribe():Process

subscribe():Position

S
u
b

s
c
ri

p
ti
o
n
 p

h
a
s
e

P
lu

g
-o

u
t
p
h

a
s
e

Figure 14: Sequence diagram for the plug-out of a process module

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

42/50

With this distributed and loose coupled behaviour, the agent-based solution can discover in a

dynamic and automatic manner the plug-in and plug-out of process modules, allowing to support

the seamless reconfiguration of the micro-flow production cell composition.

As mentioned before the reconfiguration occurs according to the production orders coming to the

micro-flow production cell as a schedule of jobs to be performed. The need to change the cell

reconfiguration comes to the operator as a need to provide the required skills to execute the

desired schedule.

4.4. Deployment of the Agent-based Reconfiguration Mechanism

The designed agent-based reconfiguration tool was deployed to support the dynamic

reconfiguration of the production cell.

4.4.1. Agent-based Infrastructure

The agent-based infrastructure was implemented using the Java Agent Development

Environment (JADE) framework [19]. JADE is an opensource software framework for

developing peer-to-peer agent-based applications in compliance with the Foundation for

Intelligent Physical Agents (FIPA) specifications for interoperable intelligent multi-agent

systems. FIPA is an organization that promotes agent-based technology and the interoperability

of its standards with other technologies. JADE supports most of the FIPA specifications, making

it an ideal choice for agent simulation and development.

A JADE-based system can be distributed across heterogenous machines and the agents can be

moved from one machine to the other as and when required. JADE also provides a powerful task

execution and composition model, peer-to-peer agent communication based on the asynchronous

message passing paradigm, a service supporting publish subscribe discovery mechanism and

many other advanced features that facilitate the development of a distributed system. Figure 15

represents the JADE FIPA-compliant agent architecture. Agents can communicate transparently

regardless of whether they live in the same container (e.g. A2 and A3), in different containers (in

the same or in different hosts) belonging to the same platform (e.g. A1 and A2) or in different

platforms (e.g. A1 and A5).

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

43/50

Figure 15 The JADE architectural elements

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

44/50

The agents communicate to implement their cooperation patterns using messages formatted

according to the FIPA-ACL specification. The agents are created according to the number of

available process modules and robots. The several instantiated agents are parametrized by parsing

an AML (Automation Markup Language) file (see Section V.C for more details), which contains,

for each agent, the name, type of device (i.e. process or robot), characteristics of the

process/robot, and connection info to the physical device. In this work, seven process agents

(brushing, dimension, marking, roughness, grinding, polish and deburring) and one robot agent

(managing an ABB industrial robot) were created to manage the reconfiguration of the micro-

flow production cell.

All the agents register their skills in the Directory Facilitator (DF), which works like yellow

pages services for the agents. It maintains an accurate, complete and timely list of the agents, that

can be easily and on-line discovered by the other agents to support the seamless reconfiguration.

4.4.2. Interconnecting the Physical Devices

The agents are interconnecting robots and machinery, by using the OPC-UA standard

(IEC62541) [20], which is aligned with the industry trends in factory automation to exchange

real-time data information (Figure 16). The connection between the OPC-UA server and the PLC

is established through Modbus TCP/IP Ethernet and with the robot through Ethernet.

Figure 16 Interfacing agents with physical hardware devices using OPC-UA

The base modelling of the OPC-UA is the concept of Nodes, which represent instances. A

NodeId uniquely identifies a Node in the OPC-UA server and is used to address the Node. An

example of a used NodeId is listed below, namely for the position "P1" of the micro-flow cell

(other nodes types).

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

45/50

NodeId nodeIdCellP1 = NodeId.parseNodeId("ns=2;s=Robot.ABB.IRB1400.bool.P1");

The agents are running in the cell computer and exchange data with the OPC-UA server by

means of standard interfaces and using mainly three methods, namely, read, write and subscribe.

The subscribe method is of particular importance to ensure the event notification of desired

events. In this case, a subscription can monitor multiple Items, where a Monitored Item is used to

define the attribute of a Node that should be monitored for data changes.

The monitoring of the changes on the Node related to the position P1 is described in the next

excerpt of code.

public void uaSubscribe() throws ServiceException, StatusException {

subscription = new Subscription();

 MonitoredDataItem itemPlugP1 = new

MonitoredDataItem(opcUaClient.nodeIdPlugP1, Attributes.Value,

MonitoringMode.Reporting);

 subscription.addItem(itemPlugP1);

 itemPlugP1.setDataChangeListener(dataChangeListenerPlugP1);

 opcUaClient.client.addSubscription(subscription);

}

public void uaSubscribe() throws ServiceException, StatusException {
 subscription = new Subscription();

MonitoredDataItem itemPlugP1 = new MonitoredDataItem(opcUaClient.nodeIdPlugP1,
Attributes.Value, MonitoringMode.Reporting);

subscription.addItem(itemPlugP1);
itemPlugP1.setDataChangeListener(dataChangeListenerPlugP1);

opcUaClient.client.addSubscription(subscription);
}

In this way, the Monitored Item is used to subscribe for data changes on the Attribute value of a

Node. According to a publish interval, when the value changes, the client who has subscribed the

event will receive a notification.

4.4.3. Data Model Instantiation

The part of the data manipulated by the agent-based reconfiguration tool is described using the

PERFoRMML (PERFoRM Markup Language) data model specified in [21], which is based on

the AutomationML [22]. PERFORMML uses OPC-UA as data format \slash transport protocol.

The \PMLEntity class is the generic representation of shop floor entities, encapsulating the

information of components and subsystems. On the PMLComponent or PMLSubsystem it is

defined the associated entities, skills and values. The PLMValue elements enable the basic

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

46/50

representation of information pertaining to data machinery level, namely in terms of parameters,

e.g., ID - a string that serve as unique identifier for this element, Description - a string containing

the description of the element, Address - a string containing the address of a value (OPC-UA).

The part of the data model containing the description of the topology of the micro flow cell

(Figure 17) results in an AML file. AML is an XML-based data format built upon other well

established, open standards spanning several engineering areas, e.g., the Computer Aided

Engineering Exchange (CAEX) that serves as the basis of hierarchical plant structures aiming at

interconnecting them [23].

In this AML file, the Instance Hierarchy comprises the topology of the cell, being built by adding

the "elements" from the System unit class, which contains all the needed elements to describe the

micro-flow cell.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

47/50

Figure 17 Topology of the micro-flow cell represented using PERFoRMML

5. Conclusions

There is a growing number of companies entering into the manufacturing industry, meaning that

for manufacturers to achieve and maintain competitiveness, they must adapt to rapid changes in

the market, which is the goal of RMSs. Traditional RMSs are operated around part families, so

parts within a particular family can be produced using a specific configuration of the resources.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

48/50

In make-to-order short life-cycle environments, sequential production of part families will lead to

frequent reconfiguration and hence excessive costs and significant loss of production time.

A reconfiguration planning and execution mechanism for concurrent production of parts from

multiple families has been designed in this task. In the proposed method, genetic algorithm is

combined with distributed multi-agent systems (MAS) to achieve optimal reconfiguration plan

and resilient reconfiguration process. The output of the optimiser is the reconfiguration schedule,

which defines the details of the reconfigurations that should be executed at a particular point in

time. Weighted sum of total tardiness and reconfiguration costs was used as the measure of

performance in generating the reconfiguration plan. The reconfiguration costs can be adjusted to

control the nervousness and the frequency of reconfiguration in the system. The agents manage

the actual reconfiguration process, thereby ensuring that the system can deal with unforeseen

situations by negotiating with another. The GA algorithm solution was implemented using the

Accord.Net Machine Learning Framework and the multi-agent system was implemented using

JADE. The developed concept will be validated and demonstrated using the GKN use case in

WP10.

References

[1] Elmaraghy, H. A. (2006) “Flexible and reconfigurable manufacturing paradigm”

International Journal of Flexible Manufacturing Systems, 17, 261-276

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

49/50

[2] Mehrabi, M. G., Ulsoy, A. G., Koren, Y. (2000) “Reconfigurable manufacturing systems:

key to future manufacturing” Journal of Intelligent Manufacturing, 11, 403-419

[3] Koren, Y., Heisel, U., Jovane, F. Moriwaki, T. Pritshow G., Ulsoy G., and Van Brussel H.

(1999) “Reconfigurable machining systems” CIRP Annals, 48 (2), 527 – 540

[4] Dou, J., Dai, X. and Meng, Z. (2010) “Optimisation for multi-part flow-line configuration

of reconfigurable manufacturing system using GA” International Journal of Production

Research, 48 (14), 4071 – 4100

[5] Gupta, A., Jain, P. K. and Kumar, D. (2014) “A novel approach for part family formation

for reconfiguration manufacturing system” OPSEARCH, 51 (1), 76-97

[6] Wang, G, Huang, S., Shang, X and Du, J. (2016) “Formation of part family for

reconfigurable manufacturing systems considering bypassing moves and idle machines”

Journal of Manufacturing Systems, 41, 120-129

[7] Kashkoush, M. and Elmaraghy, H. (2014) “Product family formation for reconfigurable

assembly systems” Procedia CIRP, 17, 302-307

[8] Deliverable D4.2 – “Planning procedure for energy and agent-based planning and

rescheduling”. PERFoRM Project, 2018

[9] Deliverable D2.2 – “Definition of the system architecture”. PERFoRM Project, 2016

[10] Deliverable D2.3 – “Specification of the generic interfaces for machinery, control systems

and data backbone”. PERFoRM Project, 2017

[11] Diveev, A. I and Bob, O. V. (2017). “Variational genetic algorithm for NP-hard

scheduling problem solution”. Procedia Computer Science, 103, 52-58

[12] Zhou, R., Lee, H. P., and Nee, A. Y. C. (2008). “Simulating the generic job shop as a

multi-agent system". International Journal of Intelligent Systems and Applications, 4,

(1/2), 5 - 33.

[13] Erol, R., Sahin, C., Baykasoglu A. and Kaplanoglu V. (2012) “A multi-agent based

approach to dynamic scheduling of machines and automated guided vehicles in

manufacturing systems". Journal of Applied Soft Computing, 12, (6), 1720 -1732

[14] Hsu, C., Kao, B., Ho, V. L. and Lai, K. R. (2016) “Agent-based fuzzy constraint-directed

negotiation mechanism for distributed job shop scheduling". Engineering Applications of

Artificial Intelligence, 53, 140 - 154

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D4.4 Reconfigurability mechanisms for machinery and robots

50/50

[15] Du, X., Li, Z. and Xiong, W. (2008) “Flexible job shop scheduling problem solving based

on genetic algorithm with model constraints, IEEE International Conference on Industrial

Engineering and Engineering Management, Singapore, Singapore, Dec. 8 -11, 2008

[16] Ferber, J. (1999) “Multi-agent systems, an introduction to distributed artificial

intelligence”, Addison Wesley.

[17] Wooldridge, M. (2002) “An introduction to multi-agent systems”, John Wiley and Sons.

[18] Muratta, T. (1989) “Petri Nets: Properties, analysis and applications”, IEEE, 77 (4), 541-

580.

[19] Bellifemine, F., Caire, G. and Greenwood, D. (2007) “Developing multi-agent systems

with JADE”, Wiley.

[20] Mahnke, W., Leitner, S. H. and Damm, M. (2009) “OPC unified architecture”, Springer

Verlag.

[21] Peres, R. S., Parreira-Rocha, M., Rocha, A. D., Barbosa, J., Leitao, P. and Barata, J.

(2016) “Selection of a data exchange format for industry 4.0 manufacturing systems”,

42
nd

 Annual Conference of the IEEE Industrial Electronics Society, Oct. 23-26, 2016,

Florence, Italy.

[22] Drath, R., Luder A., Peschke, J. and Hundt L. (2008) “AutomationML – the glue for

seamless Automation Engineering”, IEEE International Conference on Emerging

Technologies and Factory Automation, Sept. 15-18, 2008, Hamburg, Germany.

[23] Faltinski, S., Niggermann, O., Moriz, N. and Mankowski A. (2012) “AutomationML:

From data exchange to system planning and simulation” IEEE International Conference

on Industrial Technology, March 19-21, 2012, Athens, Greece.

