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Abstract. New production systems are highly reconfigurable and interact with dy-

namic industrial environments. Their modelling, simulation and analysis of the opera-

tions and evaluation of performances are now much more complex than in the past 

when system had a static and predefined behavior. This paper proposes a formalism to 

describe complex production systems, based on utilization of FSA (Finite Status Au-

tomaton). This approach is enabling better understanding and sharing with stakeholders 

of how a system works, but it is also a good basis for computer based simulation and 

control. The interaction with external environments is structured in terms of External 

Events (inputs) and Trigger Outputs. The analysis of the system status evolution pro-

vides the possibility to calculate KPIs in specific conditions or their evolution along the 

time. In the paper it is proposed a simplified description language to describe the au-

tomaton including output generation and triggering of other functions of the production 

environment. The approach is implemented and demonstrated in a particular industrial 

domain: industrial machinery fabrication sector. 
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1 The evolution of production systems towards CPS controlled 

environments 

An aggressive market competition on a global scale and the increasing frequency of 

new product introductions forcing companies to continuously upgrade their production 

capacities and the difficulty to estimate sales forecast, due to upcoming international 

competitors, led to a rapid changes of traditional manufacturing paradigm [1]. 

As a consequence, manufacturing companies, being challenged by volatile markets 

and uncertain sales forecasts, are challenged in aligning their production capacities and 

capabilities, hence reducing the ability to match high requirements in terms of short 

delivery times, low stock quantities and competitive costs [1]. For these reasons, the 

reconfigurability and the changeability (the ability to get early and foresighted adjust-

ments of the factory’s structures and processes on all levels to market change) are seen 

as key aspects that the current industrial production systems have to provide for a strong 

competitiveness [2]. 
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In order to face these problems, Cyber Physical Systems (CPS) could be the key 

enabling technology. Thanks to their ability to connect the physical part of each com-

ponent involved in the production system with its virtual concept, CPS are able to create 

a unique environment among the data coming from the shop floor and the information 

concerning the overall aspects of the value chain (i.e. dynamic market demand, prod-

ucts’ and equipment life cycle data). In this way, CPS enable to take the right decision 

in real time and, therefore, they guarantee a rapid integration, a fast change-over, and a 

ubiquitous communication assuring an agile production environment [3]. The interac-

tion between the environment and the reactive actions taken through CPS which trans-

lates physical input events into logical ones and logical output events into physical out-

put events, can be mapped using a descriptive automaton-based method [4] Thus, this 

paper proposes a model based on Finite State Automaton (FSA) able to describe the 

overall status and evolution of production processes that allow also to manage in real 

time the right information, to take the correct decisions and, therefore, to guarantee the 

correct degree of flexibility and reconfigurability.  

2 How a FSA (Finite State Automaton) can describe a 

reconfigurable production system 

2.1 Automaton Types (Moore/Mealy machines) 

A generalized sequential logic system that can be described by a number of output (n,o) 

which depend on the present and the past values of the input (n,i) can be formalized as 

a finite state machine (FSMs) [5]. It is a mathematical abstraction where all states rep-

resent all possible situations in which the state machine may ever be. As the number of 

dinstinguishable situations for a given state machine is finite, the number of states is 

finite too . Hence, it is a behavior model composed of finite number of states, transitions 

between those states, and actions [6]. Such process that provides as a result the set of 

outputs of the machine starting from a sequence of values as input can be specified as 

a as a state machine (SM) by defining a 5-tuple (Σ, Q, q0, F, δ), as described in literature 

[7]: 

 Σ is the set of symbols representing input to M,  

 Q= {S1, S2, Sn} is the set of states of M  

 q0 ∈ Q is the initial state which is the state at time 0 of M 

 F ⊆ Q is the set of final states of M 

 δ: Q × Σ → Q is the transition function,  

It may be the case that multiple inputs are received at various times, means the transition 

form the current state to another state cannot be known until the inputs are received 

(event driven). There are two types of finite state machines that generate output. They 

are called a Moore machine and a Mealy machine, named after their respective authors.. 

A Mealy Machine is an FSM whose output depends on the present state as well as the 

present input while Moore machine is an FSM whose outputs depend on only the 

present state.These behaviours can be described in a graphical and tabular form. The 



first one, that is shown in Fig. 1, is a representation that uses, as symbols, circles and 

arrows that represent, respectively, the current state of the automaton and the transition 

from one state to another. Each transition is also described with the incoming input 

symbol that determines the passage of state.Within the tabular representation, the inputs 

are listed down on the left side, and the states are reported on the top. The table cell at 

the intersection of a particular row and column indicates the destination state of the 

FSM when the row’s input is received when the machine is in the column’s state. 

 

Fig. 1. Automaton behaviour representation [7] 

 

2.2 Status of a production systems 

Replicating finite state-machine approach, it is possible to model and design a produc-

tion system by describing each component (machine, line, shop floor or application) as 

an automaton. Therefore, it is needed to identify what states each system can be in, 

what inputs or events can trigger state transitions, and how the production system will 

behave in each state. In this model, the system behaviour is as a sequence of transitions 

that move the system through its various states [8]. From this, it is needed to identify 

several key characteristics of the system that can be modeled with a finite state machine: 

 The system must be describable by a finite set of states and it must have a finite set 

of inputs and/or events that can trigger transitions between states. 

 The behavior of the system at a given point in time, considered as discrete, depends 

upon the current state and the input or event that occur at that time. 

 The system has a particular initial state 

 A system is triggered by external inputs or event, or it can be triggered or it can 

trigger another system 

A description of simple behaviour of such responsive system is described in in Fig. 2 

where 3 automata describing three subsystems interact each other. The system 1 has 

one initial state q0, one input set Σ, and the output set O. Both parts are built upon a set 

E of interactions with the environment, called events. The input is a conjunction of 

events and it describes a condition generated by the environment to which the system 

reacts. The events can be external or internal (to the global production system) depend-

ing on where they come from. During the initial phase, Automaton 1 is in S1 state. Once 

an external event occurs, based on instructions associated to such event, it transitions 

from S1 to a specific status S2. The Automaton 1 status change is the output of the 

transition function δ, which represents the Actions that have to be executed by the Au-

tomaton 1 and eventually cause its status change. One of the actions of Automaton 1 is 



the generation of an event that Automaton 2 receives as an internal input, determining 

its status change. For this reason, Automaton 2 transitions from status S1 to a specific 

Sn status, depending on the specific event that occurs. Same reasoning can be done for 

Automaton 3., which will react to event coming from Automaton 2 by changing its 

current status.  

Fig. 2. Multiple Automaton system example 

 
It is important to note that each Automaton can represent one or multiple similar 

physical components of the production system or a group of them, but it can also rep-

resent specific functional components as planning, operational or human intervention 

and for this reason, a production system can be represented as a combination of Au-

tomaton able to interact with each other. As a consequence, knowing the status space, 

the event space and the transition functions of each Automaton, it is possible to be 

aware a priori of the reactive behaviour of the system modelling and simulating them. 

3 KPI measurements 

The proposed model describes both the whole set of status in which an automaton 

can be and tracks the time spent by the automaton in each status. This ability is guar-

anteed by the fact that the automaton changes its status every time an event occurs and 

by the fact that the model is able to list the temporal sequence of the occurred events. 

In this way, the model can provide information about the status history of the automaton 

and about their duration. Hence, it is possible to estimate time-based performance indi-

cators associated to each status. In fact, knowing that the time is considered as discrete, 

it is possible to describe some machine parameters as an event the machine is subject 

to, constant over time intervals and memoryless. The figure below depicts that consid-

ering, for example, the overall time spent in failure and maintenance status, an estima-

tion of MTTR indicator for that machine can be provided. Following the same reason-

ing, the MTBF estimation can be obtained. Finally, knowing that machine availability 

depends on these values, also its estimation can be evaluated. Calculating the time spent 
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in not-productive status, it is possible to describe the real utilization rate of that ma-

chine. Therefore, it is shown how it is possible to estimate different kind of KPIs (i.e. 

OEE), starting from the analysis of an automaton status evolution in the time domain. 

Fig. 3. State transition on time 

 

4 Implementation of FSA for industrial environment on 

computer 

Implementation of FSA is a well defined topics, for example in string parsing and reg-

ular expression matching. Adoption of FSA is also well known in monitoring and con-

trol of real-time system, where the computer operating system is able to generate (asyn-

chronous) inputs as reaction to external (asynchronous) event collected by I/O devices 

(e.g. sensors). 

 

4.1 Architecture and coding of a FSA 

In order to implement a FSA for industrial purposes on a computer, the only require-

ment is that the operating system is able to manage asynchronous events; most of the 

programming languages can be adopted to code such application. The Core automaton 

is implemented by a process in Hibernate state that after a system and environment 

setup is on hold waiting to manage external inputs. A specific automaton can be instan-

tiated many times, that is can manage multiple similar physical components (e.g. mul-

tiple machines of the same department) working in the same way, utilizing the same 

automaton, but evolving autonomously. It is required that each instance (each machine) 

is properly described by a dedicated set of data (the Context). The Context contains all 

the specific information describing the history and the characteristic of the specific in-

stance; it is usually implemented utilizing a static memory area. When an event is gen-

erated, the operating system is able to associate the event to the specific indicator of the 

instance (the physical component) it refers to (this is called Context Pointer). The de-

scription of the automaton is usually carried out in a matrix (as described in Fig. 1) 

where for each status the automaton can have, are described the actions to take for each 

possible event. The actions to take are described by ACTIONS, they are portion of code 

implementing the operation to execute. The ACTIONS are described by a syntax com-

posed by the following keywords: 

Time 

Units

MTTR MTBF



 ACTION (ID, Action_Name): they keyword launches the execution of the 

procedure Action_Name passing the parameter ID as argument to identify the 

instance of the automaton and pointing to the associate Context. The ACTION 

is a portion of code with the activities required, including the physical output 

as printing, displaying or driving an actuator; 

 NEXTSTATUS(ID): this keyword is the last of the instruction to be executed 

to manage the event and describe the next status the automaton is transitioning 

to; 

 OUTPUT (AUTOMATON, ID, event): this keyword generates an event on the 

instance ID of the automaton. 

4.2 Simulation and Monitoring  

The utilization of the FSA is a powerful for simulating the behavior of the physical 

system, just assigning an Arbitrary sets of Initial Status and generating the desired se-

quence of events E(t). Moreover, the memorization of the sequence of the status each 

instance of the automaton along the time, allows to monitor the evolution and behavior 

of the system, assuring the capability to asses and quantify KPIs (see chapter 3) 

5 Industrial Machinery: case study 

The industrial real case has been implemented in EU-project PERFoRM ([3]) and it 

analyzed belongs to the machinery sector. The real production environment is com-

posed of a production line made of different machines, a common scheduling and a 

maintenance system. In order to model the production system, the real production en-

vironment has been simplified considering one block made of only three resources: one 

machine, the scheduling and the maintenance system. In this way, it is possible to model 

the overall production environment by replying this block every time is needed. These 

three resources are considered as three different Automaton, each of them having a 

finite number of status in which it can be, a finite number of possible events which 

could have an impact on those status, some transition functions and actions it could 

take. In the figure below, the automata describing the machine (lathe) is depicted. 

Fig. 4. Lather machine status, events and actions 

 



The lathe machine can have 6 different status and can change from one to another if 

some external or internal event occurs. It is defined that only 2 external events and 1 

internal event can let the lathe machine status change. Please consider that the same 

automaton can describe (utilize multiple Contexts) multiple physical machines. The 

work processed by this machine is defined by the scheduling system which has 2 pos-

sible status as shown in the fig5. It can monitor and control how the lathe machine is 

performing (S1) or it can schedule the production for the lathe machine (S2). Only 1 

event can let its status change: the arrival of a signal from the lathe machine. When this 

event occurs, it reacts by communicating with the maintenance system, sending it a 

notification and connecting it to the lathe machine which sent the signal. Also the 

maintenance system can find itself in 2 different states (Fig. 5): monitor and control 

and execution. It changes from the monitoring status to the execution status when 

scheduling systems requires its intervention on the lathe machine. Once the mainte-

nance execution has been finished, it turns back to the scheduling system sending it a 

notification. In this way, thanks to this communication, scheduling system can provide 

a new schedule for the lathe machine, which will start working again.  

Fig. 5. Scheduling & Maintenance system status, events and actions 

 

 

In order to facilitate the understanding of the method, an example is provided here fol-

low. Let’s assume that at t=0 the lathe machine is working and so it is in Sa,w status. 

At a certain time, smart sensors embedded on it send an alert to the machine, which 

leaves the Sa,w status and turns to the Sa,h one. When the lathe machine is in Sa,h 

status, it sends a notification to the scheduling system in order to let it aware of what is 

happening on the production flow. The scheduling system, which goes to Sm&c status 

to Ssch one, can now decide what kind of actions are needed to let the lathe machine 

start working again. Scheduling can decide to let the machine continue working but at 

a low rate, sending it this order and moving it to the Sa,sl status, or can decide to stop 

the production and send an alert to the maintenance system. In the first case, if machine 

has already sent an alert signal to the scheduling system but this system decided to let 

machine continue working, at a certain time, it can happen that the lathe machine can 

fail, moving itself from Sa,sl status to Sf status. Both in the second case mentioned 

above and in this last case, scheduling system send an alert to the maintenance system, 

which turns its status from Sm&c to Se. At the same time, the lathe machine changes 



its status in Sm. Once the maintenance finishes its work, it goes back to the scheduling 

system, which can now generate a new schedule for the repaired lathe machine. 

This narrative description of the automaton can be also described utilizing matrixes as 

described in Fig. 1 b. 

6 Conclusions 

The proposed approach allows description of the production system, regardless its 

complexity and the number of each components and their actual configuration; the uti-

lization of multiple automaton synchronized each other allows to expand the domain 

we are describing both in terms of additional function and multiple instances of the 

same components. The flexibility of the approach associated with embedded ability to 

manage asynchronous events make very easy to integrate interaction of external sys-

tems (e.g. planning, maintenance, logistics, etc.) and the interaction with human oper-

ators. The definition of the admissible status and input event defines the boundary of 

the systems and its representation on the status/input matrix allows an easy and under-

standable analysis and communication of the way the system behaves. This can be the 

input for implementation of simulation systems on other platforms. Last the tracking of 

the transition of the status in the time domain allows to calculate and consolidate KPIs. 
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