
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

A description and analysis method

for reconfigurable production systems

Filippo Boschi, Giacomo Tavola, Marco Taisch

Politecnico di Milano, Milano, Italy, {filippo.boschi, giacomo.tavola,

marco.taisch}@polimi.it

Abstract. New production systems are highly reconfigurable and interact with dy-

namic industrial environments. Their modelling, simulation and analysis of the opera-

tions and evaluation of performances are now much more complex than in the past

when system had a static and predefined behavior. This paper proposes a formalism to

describe complex production systems, based on utilization of FSA (Finite Status Au-

tomaton). This approach is enabling better understanding and sharing with stakeholders

of how a system works, but it is also a good basis for computer based simulation and

control. The interaction with external environments is structured in terms of External

Events (inputs) and Trigger Outputs. The analysis of the system status evolution pro-

vides the possibility to calculate KPIs in specific conditions or their evolution along the

time. In the paper it is proposed a simplified description language to describe the au-

tomaton including output generation and triggering of other functions of the production

environment. The approach is implemented and demonstrated in a particular industrial

domain: industrial machinery fabrication sector.

Keywords: Cyber Physical Systems, Finite Status Automaton, Reconfigurable

Production Systems, Modelling

1 The evolution of production systems towards CPS controlled

environments

An aggressive market competition on a global scale and the increasing frequency of

new product introductions forcing companies to continuously upgrade their production

capacities and the difficulty to estimate sales forecast, due to upcoming international

competitors, led to a rapid changes of traditional manufacturing paradigm [1].

As a consequence, manufacturing companies, being challenged by volatile markets

and uncertain sales forecasts, are challenged in aligning their production capacities and

capabilities, hence reducing the ability to match high requirements in terms of short

delivery times, low stock quantities and competitive costs [1]. For these reasons, the

reconfigurability and the changeability (the ability to get early and foresighted adjust-

ments of the factory’s structures and processes on all levels to market change) are seen

as key aspects that the current industrial production systems have to provide for a strong

competitiveness [2].

mailto:giacomo.tavola,%20marco.taisch%7d@polimi.it
mailto:giacomo.tavola,%20marco.taisch%7d@polimi.it

In order to face these problems, Cyber Physical Systems (CPS) could be the key

enabling technology. Thanks to their ability to connect the physical part of each com-

ponent involved in the production system with its virtual concept, CPS are able to create

a unique environment among the data coming from the shop floor and the information

concerning the overall aspects of the value chain (i.e. dynamic market demand, prod-

ucts’ and equipment life cycle data). In this way, CPS enable to take the right decision

in real time and, therefore, they guarantee a rapid integration, a fast change-over, and a

ubiquitous communication assuring an agile production environment [3]. The interac-

tion between the environment and the reactive actions taken through CPS which trans-

lates physical input events into logical ones and logical output events into physical out-

put events, can be mapped using a descriptive automaton-based method [4] Thus, this

paper proposes a model based on Finite State Automaton (FSA) able to describe the

overall status and evolution of production processes that allow also to manage in real

time the right information, to take the correct decisions and, therefore, to guarantee the

correct degree of flexibility and reconfigurability.

2 How a FSA (Finite State Automaton) can describe a

reconfigurable production system

2.1 Automaton Types (Moore/Mealy machines)

A generalized sequential logic system that can be described by a number of output (n,o)

which depend on the present and the past values of the input (n,i) can be formalized as

a finite state machine (FSMs) [5]. It is a mathematical abstraction where all states rep-

resent all possible situations in which the state machine may ever be. As the number of

dinstinguishable situations for a given state machine is finite, the number of states is

finite too . Hence, it is a behavior model composed of finite number of states, transitions

between those states, and actions [6]. Such process that provides as a result the set of

outputs of the machine starting from a sequence of values as input can be specified as

a as a state machine (SM) by defining a 5-tuple (Σ, Q, q0, F, δ), as described in literature

[7]:

 Σ is the set of symbols representing input to M,

 Q= {S1, S2, Sn} is the set of states of M

 q0 ∈ Q is the initial state which is the state at time 0 of M

 F ⊆ Q is the set of final states of M

 δ: Q × Σ → Q is the transition function,

It may be the case that multiple inputs are received at various times, means the transition

form the current state to another state cannot be known until the inputs are received

(event driven). There are two types of finite state machines that generate output. They

are called a Moore machine and a Mealy machine, named after their respective authors..

A Mealy Machine is an FSM whose output depends on the present state as well as the

present input while Moore machine is an FSM whose outputs depend on only the

present state.These behaviours can be described in a graphical and tabular form. The

first one, that is shown in Fig. 1, is a representation that uses, as symbols, circles and

arrows that represent, respectively, the current state of the automaton and the transition

from one state to another. Each transition is also described with the incoming input

symbol that determines the passage of state.Within the tabular representation, the inputs

are listed down on the left side, and the states are reported on the top. The table cell at

the intersection of a particular row and column indicates the destination state of the

FSM when the row’s input is received when the machine is in the column’s state.

Fig. 1. Automaton behaviour representation [7]

2.2 Status of a production systems

Replicating finite state-machine approach, it is possible to model and design a produc-

tion system by describing each component (machine, line, shop floor or application) as

an automaton. Therefore, it is needed to identify what states each system can be in,

what inputs or events can trigger state transitions, and how the production system will

behave in each state. In this model, the system behaviour is as a sequence of transitions

that move the system through its various states [8]. From this, it is needed to identify

several key characteristics of the system that can be modeled with a finite state machine:

 The system must be describable by a finite set of states and it must have a finite set

of inputs and/or events that can trigger transitions between states.

 The behavior of the system at a given point in time, considered as discrete, depends

upon the current state and the input or event that occur at that time.

 The system has a particular initial state

 A system is triggered by external inputs or event, or it can be triggered or it can

trigger another system

A description of simple behaviour of such responsive system is described in in Fig. 2

where 3 automata describing three subsystems interact each other. The system 1 has

one initial state q0, one input set Σ, and the output set O. Both parts are built upon a set

E of interactions with the environment, called events. The input is a conjunction of

events and it describes a condition generated by the environment to which the system

reacts. The events can be external or internal (to the global production system) depend-

ing on where they come from. During the initial phase, Automaton 1 is in S1 state. Once

an external event occurs, based on instructions associated to such event, it transitions

from S1 to a specific status S2. The Automaton 1 status change is the output of the

transition function δ, which represents the Actions that have to be executed by the Au-

tomaton 1 and eventually cause its status change. One of the actions of Automaton 1 is

the generation of an event that Automaton 2 receives as an internal input, determining

its status change. For this reason, Automaton 2 transitions from status S1 to a specific

Sn status, depending on the specific event that occurs. Same reasoning can be done for

Automaton 3., which will react to event coming from Automaton 2 by changing its

current status.

Fig. 2. Multiple Automaton system example

It is important to note that each Automaton can represent one or multiple similar

physical components of the production system or a group of them, but it can also rep-

resent specific functional components as planning, operational or human intervention

and for this reason, a production system can be represented as a combination of Au-

tomaton able to interact with each other. As a consequence, knowing the status space,

the event space and the transition functions of each Automaton, it is possible to be

aware a priori of the reactive behaviour of the system modelling and simulating them.

3 KPI measurements

The proposed model describes both the whole set of status in which an automaton

can be and tracks the time spent by the automaton in each status. This ability is guar-

anteed by the fact that the automaton changes its status every time an event occurs and

by the fact that the model is able to list the temporal sequence of the occurred events.

In this way, the model can provide information about the status history of the automaton

and about their duration. Hence, it is possible to estimate time-based performance indi-

cators associated to each status. In fact, knowing that the time is considered as discrete,

it is possible to describe some machine parameters as an event the machine is subject

to, constant over time intervals and memoryless. The figure below depicts that consid-

ering, for example, the overall time spent in failure and maintenance status, an estima-

tion of MTTR indicator for that machine can be provided. Following the same reason-

ing, the MTBF estimation can be obtained. Finally, knowing that machine availability

depends on these values, also its estimation can be evaluated. Calculating the time spent

S1 S2 ….

….

Sn

Actio
n 1

Decisio

n f or:

Mainte

nance

Decisio

n f or:

Mainten

ace

S1 S2 …

…

…

….

Sn

Ev ent

n#1

…….

…….

Ev ent

n#2

……

…

Recei

v e

maint

enanc

e

Maint

enanc

e

execu

tion

Failur

e ty pe

«A»

notif ic

ation

Send

notif ic

ation

….. ……

S1 S2 …..

….

Sn

Action 1 Executio

n

Receiv e

notif icati

on

Executio

n

Automata 2

Automata 3

Automata 1

System 1

in not-productive status, it is possible to describe the real utilization rate of that ma-

chine. Therefore, it is shown how it is possible to estimate different kind of KPIs (i.e.

OEE), starting from the analysis of an automaton status evolution in the time domain.

Fig. 3. State transition on time

4 Implementation of FSA for industrial environment on

computer

Implementation of FSA is a well defined topics, for example in string parsing and reg-

ular expression matching. Adoption of FSA is also well known in monitoring and con-

trol of real-time system, where the computer operating system is able to generate (asyn-

chronous) inputs as reaction to external (asynchronous) event collected by I/O devices

(e.g. sensors).

4.1 Architecture and coding of a FSA

In order to implement a FSA for industrial purposes on a computer, the only require-

ment is that the operating system is able to manage asynchronous events; most of the

programming languages can be adopted to code such application. The Core automaton

is implemented by a process in Hibernate state that after a system and environment

setup is on hold waiting to manage external inputs. A specific automaton can be instan-

tiated many times, that is can manage multiple similar physical components (e.g. mul-

tiple machines of the same department) working in the same way, utilizing the same

automaton, but evolving autonomously. It is required that each instance (each machine)

is properly described by a dedicated set of data (the Context). The Context contains all

the specific information describing the history and the characteristic of the specific in-

stance; it is usually implemented utilizing a static memory area. When an event is gen-

erated, the operating system is able to associate the event to the specific indicator of the

instance (the physical component) it refers to (this is called Context Pointer). The de-

scription of the automaton is usually carried out in a matrix (as described in Fig. 1)

where for each status the automaton can have, are described the actions to take for each

possible event. The actions to take are described by ACTIONS, they are portion of code

implementing the operation to execute. The ACTIONS are described by a syntax com-

posed by the following keywords:

Time

Units

MTTR MTBF

 ACTION (ID, Action_Name): they keyword launches the execution of the

procedure Action_Name passing the parameter ID as argument to identify the

instance of the automaton and pointing to the associate Context. The ACTION

is a portion of code with the activities required, including the physical output

as printing, displaying or driving an actuator;

 NEXTSTATUS(ID): this keyword is the last of the instruction to be executed

to manage the event and describe the next status the automaton is transitioning

to;

 OUTPUT (AUTOMATON, ID, event): this keyword generates an event on the

instance ID of the automaton.

4.2 Simulation and Monitoring

The utilization of the FSA is a powerful for simulating the behavior of the physical

system, just assigning an Arbitrary sets of Initial Status and generating the desired se-

quence of events E(t). Moreover, the memorization of the sequence of the status each

instance of the automaton along the time, allows to monitor the evolution and behavior

of the system, assuring the capability to asses and quantify KPIs (see chapter 3)

5 Industrial Machinery: case study

The industrial real case has been implemented in EU-project PERFoRM ([3]) and it

analyzed belongs to the machinery sector. The real production environment is com-

posed of a production line made of different machines, a common scheduling and a

maintenance system. In order to model the production system, the real production en-

vironment has been simplified considering one block made of only three resources: one

machine, the scheduling and the maintenance system. In this way, it is possible to model

the overall production environment by replying this block every time is needed. These

three resources are considered as three different Automaton, each of them having a

finite number of status in which it can be, a finite number of possible events which

could have an impact on those status, some transition functions and actions it could

take. In the figure below, the automata describing the machine (lathe) is depicted.

Fig. 4. Lather machine status, events and actions

The lathe machine can have 6 different status and can change from one to another if

some external or internal event occurs. It is defined that only 2 external events and 1

internal event can let the lathe machine status change. Please consider that the same

automaton can describe (utilize multiple Contexts) multiple physical machines. The

work processed by this machine is defined by the scheduling system which has 2 pos-

sible status as shown in the fig5. It can monitor and control how the lathe machine is

performing (S1) or it can schedule the production for the lathe machine (S2). Only 1

event can let its status change: the arrival of a signal from the lathe machine. When this

event occurs, it reacts by communicating with the maintenance system, sending it a

notification and connecting it to the lathe machine which sent the signal. Also the

maintenance system can find itself in 2 different states (Fig. 5): monitor and control

and execution. It changes from the monitoring status to the execution status when

scheduling systems requires its intervention on the lathe machine. Once the mainte-

nance execution has been finished, it turns back to the scheduling system sending it a

notification. In this way, thanks to this communication, scheduling system can provide

a new schedule for the lathe machine, which will start working again.

Fig. 5. Scheduling & Maintenance system status, events and actions

In order to facilitate the understanding of the method, an example is provided here fol-

low. Let’s assume that at t=0 the lathe machine is working and so it is in Sa,w status.

At a certain time, smart sensors embedded on it send an alert to the machine, which

leaves the Sa,w status and turns to the Sa,h one. When the lathe machine is in Sa,h

status, it sends a notification to the scheduling system in order to let it aware of what is

happening on the production flow. The scheduling system, which goes to Sm&c status

to Ssch one, can now decide what kind of actions are needed to let the lathe machine

start working again. Scheduling can decide to let the machine continue working but at

a low rate, sending it this order and moving it to the Sa,sl status, or can decide to stop

the production and send an alert to the maintenance system. In the first case, if machine

has already sent an alert signal to the scheduling system but this system decided to let

machine continue working, at a certain time, it can happen that the lathe machine can

fail, moving itself from Sa,sl status to Sf status. Both in the second case mentioned

above and in this last case, scheduling system send an alert to the maintenance system,

which turns its status from Sm&c to Se. At the same time, the lathe machine changes

its status in Sm. Once the maintenance finishes its work, it goes back to the scheduling

system, which can now generate a new schedule for the repaired lathe machine.

This narrative description of the automaton can be also described utilizing matrixes as

described in Fig. 1 b.

6 Conclusions

The proposed approach allows description of the production system, regardless its

complexity and the number of each components and their actual configuration; the uti-

lization of multiple automaton synchronized each other allows to expand the domain

we are describing both in terms of additional function and multiple instances of the

same components. The flexibility of the approach associated with embedded ability to

manage asynchronous events make very easy to integrate interaction of external sys-

tems (e.g. planning, maintenance, logistics, etc.) and the interaction with human oper-

ators. The definition of the admissible status and input event defines the boundary of

the systems and its representation on the status/input matrix allows an easy and under-

standable analysis and communication of the way the system behaves. This can be the

input for implementation of simulation systems on other platforms. Last the tracking of

the transition of the status in the time domain allows to calculate and consolidate KPIs.

7 Acknowledgment

This project has received funding from the European Union’s Horizon

2020 research and innovation program under grant agreement No 680435.

8 References

[1] D. Spath, S. Gerlach, S. Schlund, “Cyber-physical system for self-organised and flexible

labour utilisation,” in 22nd International Conference on Production Research, 2013.

[2] P. Nyhuis, N. Duffie, M. Brieke, “Changeable Manufacturing - Classification , Design and

Operation,” CIRP Ann. - Manuf. Technol. Ann. Technol., vol. 56, no. 2, pp. 783–809, 2007.

[3] PERFoRM – Production harmonizEd Reconfiguration of Flexible Robots and Machinery,

“http://www.horizon2020-perform.eu,” 2016. .

[4] F. Maraninchi, “The Argos Language: Graphical Representation of Automata and

Description of Reactive Systems,” in IEEE Workshop on Visual Languages, 1991, p. Vol.3.

[5] J. F. Wakerly, “Sequential logic design principles,” in Digital design: principles and

practices, Prentice Hall, Ed. 2005, pp. 431–558.

[6] M. Thirumaran, “Evaluating Service Business Logic using Finite State Machine for

Dynamic Service Integration,” Int. J. Comput. Appl. (0975 8887), vol. 22, pp. 33–39, 2011.

[7] J.Hennessy and D. Patterson, “Large and Fast: Exploiting Memory Hierarchy,” in

Computer Organization and Design The hardware/software interface, Ed. MORGAN

KAUFMANN, 2013, pp. 450–548.

[8] Wright, D. R. (2012). Finite state machines. CSC215 Class Notes. Prof. David R. Wright

website. N. Carolina State Univ. Retrieved July, 14, 1-28..

