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Abstract  

Flexible job-shop scheduling problem is one of the well-known combinatorial optimisation problems 

and it has been studied extensively due its practical importance. Traditional centralised production 

planning and scheduling systems can provide optimal solutions with respect to certain performance 

measures such as makespan, tardiness and energy consumption. However, they are inflexible and are 

unable to cope with real-world environments that are characterised by complexities, dynamic alterations 

and unanticipated changes in the production conditions. Multi-agent-based scheduling technology 

provides a promising way to address dynamic changes and unpredictable disturbances in the 

manufacturing shop floor without disruption in production. Although agent-based technology has been 

proven to be an appropriate solution for handling real-time and on-demand changes, optimal production 

schedules cannot be guaranteed.  

The work reported in this report is focused on the harmonization and standardization of techniques for 

achieving both flexible and optimal or near-optimal planning and scheduling systems. The performance 

measures to be minimised are energy consumption and tardiness costs. The aim is to generate an optimal 

schedule based on ideal production circumstances. Instead of using a centralised control system to execute 

the schedule, multi-agent systems are deployed. Decision-making policies that follow the selected 

schedule are built into the agents and they attempt to execute the preliminary policies as much as possible. 

In the event of machine breakdown or any other unforeseen events, the agents react quickly by allocating 

parts to other available resources without disruptions in production. This hybrid solution attempts to 

produce optimal schedules with respect to the chosen performance measures and also respond to emerging 

system behaviors that cannot be precisely predicted in advance. 

There are two aspects to the proposed solution. The first is the design of an effective genetic algorithm 

for the flexible job-shop scheduling problem. Although there are no guarantee that stochastic and heuristic 

search methods will produce optimal schedules, they are known to give satisfactory results since they do 

not need to evaluate all the feasible search space to extract good solutions. Secondly, an agent-based 

simulator that uses the initial schedule data as input is implemented. Although the developed tool and 

methods can be generalised, simulation experiments and results based on the GKN use case are presented. 
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1. Introduction 

1.1. Structure of the Report 

This report contains the outcome of Task 4.2, titled “Planning procedures for energy and agent-based 

planning and (re)-scheduling”. There are five main sections in the report. Section 1 is the introductory 

section, which contains the problem definition and the objectives of this report.  Section 2 contains 

requirements specification and system analysis. The details of the tools and methods developed in this task 

using genetic algorithm and multi-agent systems are presented in Section 3 and 4.  Simulation results 

obtained from an agent-based simulator developed using AnyLogic software are presented in Section 5. 

1.2. Problem Definition 

Various methods for planning production systems have been reported in the literature and are also 

found in shop floor manufacturing execution systems. The methods differ in the number of components 

involved, levels of centralisation, performance measures optimisation capability, flexibility, reliability and 

scalability. In this task, two classes of planning and scheduling problems, namely centralised (static) and 

distributed (dynamic) scheduling are considered.  

Classic scheduling problems are centralised and are solved using algorithms that optimise global 

performance objectives such as makespan, flowtime and tardiness and energy consumption [1, 2, 3, 4, 5]. 

Although centralised approaches can produce optimised schedules, they require accurate knowledge of the 

overall system states and the availability of resources throughout the execution period of a schedule is 

implicitly assumed. That is, the generated schedules are tied to specific resources at a particular time of 

the production process. This is suitable to static environments, whereas most real-world environments are 

characterised by unexpected disruptions and contingencies such as machine breakdowns, stochastic 

incoming jobs and changes in due dates. The approaches developed for solving static scheduling problems 

are often impractical in dynamic environments. The optimal schedule generated in advance may become 

obsolete or even infeasible when released to the shop floor as it does not make use of real-time 

information [6]. When a resource becomes unavailable or a new product is inserted into the production 

process, the processing plan may be subject to a major regeneration. 

The evolution of manufacturing control systems from static to dynamic scheduling techniques that can 

provide real-time reactions to environmental changes has motivated the development of more adaptive 

schedulers. In recent years, multi-agent technology has been adopted for creating test beds for the 

examination of various planning and scheduling methods in dynamic environments [7, 8, 9].  It has been 

proven that agent-based schedulers provide better overall performance in environments that require 

reconfigurability, flexibility and reliability.  In agent-based scheduling, dispatch rules or other heuristics 

are used to guide the agents in assigning and sequencing operations on resources in real-time instead of 

executing a pre-generated schedule. Decision making occurs in a distributed fashion and the final schedule 

emerges from the negotiation and cooperation among the autonomous agents. Agent-based planning and 

scheduling architecture has the advantages of flexibility, adaptability, fault-tolerance and robustness, but it 

also suffers a major disadvantage. There is no guarantee that the emergent schedule will be optimal due to 

the localised decision-making policies of the agents.  
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One of the strategies used to deal with uncertainties in dynamic environments is known as the 

predictive-reactive scheduling [10]. This strategy exploits the combined benefits of both static and 

distributed agent-based scheduling systems. In the strategy, a scheduler generates a preliminary schedule 

prior to execution based on the information available on the shop floor and some desired performance 

objectives. The schedule is then executed and refined by the agents in response to disturbances and other 

changes in the environment. 

Some hybrid approaches addressing optimality and feasibility have been proposed in the literature. These 

solutions combine multi-agent systems with various optimisation techniques [11, 12, 13]. The approach 

presented in Task 4.2 consists of two steps.  The first step is to generate a static optimal schedule 

according to the available information at the time of generating the schedule. The agents attempt to follow 

the schedule and then adjust promptly in the event of any disturbances.  Consequently, the agents will 

execute the optimal schedule if there are no disturbances. The agents react accordingly in the event of any 

disturbance to produce a feasible schedule that is as close to optimal as possible. 

1.3. Aims and Objectives of Task 4.2 

The aim of Task 4.2 is to create a planning and scheduling architecture for a flexible manufacturing 

system (FMS), which will guarantee tactical allocation of resources with respect to chosen performance 

objectives while also ensuring real-time reactions to disturbances. The objectives towards the achievement 

of this aim are: 

 To define a structure for linking planning and scheduling layers of production systems to 

higher and lower level layers 

 To create planning and scheduling framework that will address: 

o Dispatch rules for optimising production performance measures 

o On-demand responses to aperiodic incoming orders and customer demands 

o Stability and adaptability in the face of disturbances such as machine breakdowns 

o Efficient use of resources and energy 

 To build a simulator that will facilitate systematic evaluation of the performances of various 

dispatch rules and algorithms under diverse types of disruptions. 
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2. Requirements Specification and System Analysis 

Industrial partners involved in the PERFoRM project have provided some relevant use cases that 

present both research and innovation challenges. The goal of this task is to create tools and methods that 

are applicable to any flexible production planning and scheduling problem. However, the GKN use case 

[14, 15] related to production planning and scheduling is used for problem formulation and requirements 

specifications. The use case can be categorised as a flexible job shop scheduling problem for a 

combination layout manufacturing environment.  

2.1. Shop Floor Layout 

The GKN use case presents a hybrid layout problem in which machines are arranged in a combination 

of cellular and process layouts. In a cellular layout, machines are grouped according to the process 

requirements for a set of part families that require similar processing, whereas, in a process layout, 

machines are arranged according to functions rather than in a cellular configuration where sequential 

process steps are located in close proximity.  

GKN has come up with the concept of Micro-Flow Cells for making parts (Figure 1). The cells have 

reconfigurable modules for performing a variety of operations.  

 

 

Figure 1 Micro-Flow Cell [14] 
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Figure 2 Hybrid cellular and process machine layout 
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The overall layout of the manufacturing plant is shown in Figure 2. As shown in the figure, there are 

workstations, each of which consists of identical parallel machine tools. The machine tools in each 

workstation are configured to perform similar operations. Although multiple operations can be performed 

in the Micro-Flow cells, each cell is effectively a single multi-purpose machine because the modules are 

supported by a robot. Although the literature does not reflect much research into combination layout 

scheduling problems, the layout is commonly used in factories where flexibility is very important. 

Therefore, the developed concepts are more generally applicable. 

2.2. Flexibility Requirements 

Literature on manufacturing flexibility is vast and there is no general agreement on its definition as 

organisations define it according to their specific needs. However, researchers have attempted to divide 

the concept into several classes [16]. The flexibility requirements and the key performance indicators 

considered in the PERFoRM project fall generally under machine, process and routing flexibilities [16].  

Machine flexibility refers to the ability of a machine to perform a variety of operations either in fixed 

or variable configurations. Reconfiguration is outside the scope of Task 4.2, so this class of flexibility is 

not addressed. It is assumed that once machines have been configured for a set of part families, they 

cannot be changed during the schedule execution. The requirements capture exercise undertaken with 

GKN personnel revealed that the process, routing and operation flexibilities are applicable to their 

production planning and scheduling problem. 

Process flexibility refers to the ability of a manufacturing system to produce various parts 

concurrently [16]. The planning and scheduling problem presented by the GKN use case involves 

manufacturing of various parts, which are put together to produce final components. The parts are made at 

the same time, so process flexibility is a requirement in this task. The process flexibility is a fundamental 

requirement in most production planning and scheduling problems. 

 Routing flexibility is the ability to choose any machine from a set of available ones to perform an 

operation rather than having a single machine. This can be achieved only if there is redundancy in terms of 

spare capacity in the system. The redundancy can be created either by having multiple multi-purpose 

machines capable of performing a variety of operations, or by configuring a group of machines to perform 

the same single operation. The layout in Figure 2 enables parts to be manufactured via several routes and 

each operation could be performed by any suitable machine tool or in any Micro-Flow cell. This layout 

enables the manufacturing system to maintain production under failure conditions by rerouting and 

rescheduling parts effectively. This is a typical flexible job-shop or flow-shop scheduling problem that is 

modelled to allow an operation of each part to be processed by more than one machine. 

Considering the afore-mentioned requirements, the scheduling problem in Task 4.2 is multi-

component. The problem is modelled as a flexible job-shop for cellular and functional layout system. 

Unlike the classical flexible job-shop problem where machines are arranged in purely functional layout, 

some operations are performed in the Micro-Flow cells. This means that once a part enters a cell, the 

cellular operations of the part must be constrained to that cell rather than allowing the part to move in 

between cells (Figure 3).  
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Figure 3 Parts flow diagram through workstations and Micro-Flow cells 

2.3. Performance Evaluation Criterion 

The goal of scheduling optimisation is to find the best schedule based on the objective functions of 

relevance. Commonly used performance measures are makespan, tardiness and flow time. However, some 

researchers have also considered machine utilisation and energy consumption optimisation [17, 18, 19]. 

The concept of makespan is not directly applicable to production facilities that have both static and 

dynamic parts entry patterns. The two optimality objectives considered in Task 4.2 are energy 

consumption and tardiness. The energy consumption is the amount of energy consumed by a machine 

during processing. Tardiness is a measure of delay in manufacturing a part. Since these two objectives 

could be conflicting, the goal is to create schedules that provide the best trade-offs between them. 

Evolutionary multi-objective optimisation approaches have been applied to various scheduling 

problems and their ability to explore multiple trade-offs in the objective space has been shown [17, 19, 

20]. The advantage of simultaneous optimisation of multi-objective functions over weighted sum of single 

objectives is that pareto-optimal solutions from which a solution that satisfies the subjective preference of 

a decision maker can be generated. However, weighted sum of energy cost and tardiness cost is used as 

the objective function in this task for simplicity. 
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2.4. Hybrid Centralised and Agent-Based Scheduling 

As mentioned in Chapter 1, both centralised and distributed agent-based planning and scheduling 

systems have unique pros and cons. In agent-based scheduling, a greedy strategy is used to make a locally 

optimal decision at each stage of the process with the hope that a globally optimal solution could emerge.  

A greedy strategy does not always produce an optimal solution because of its short sightedness and non-

recoverability. Agents can make certain commitments too early in the execution process, which prevent 

them from finding the best overall solution later. In order to create a system that is close to optimal and 

also robust to disturbances, the traditional centralised method is combined with agent-based approach.  

 

Figure 4 Hybrid centralised and agent-based scheduling system 
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As shown in Figure 4, genetic algorithm is used to generate an initial optimised schedule. The initial 

schedule is then used to generate a dispatch rule for the agents during the workflow execution phase. A 

dispatch rule known as the earliest operation due time (EODT) is created from the schedule. The EODT is 

different from the conventional earliest due time dispatch rule. It represents the start time of an operation 

in the optimised schedule rather than the overall due time of the part. 

In terms of implementing the proposed solution on the shop floor, the manufacturing execution system 

(MES) layer will need to be structured differently from the existing architecture. The architecture that will 

support the solution is as shown in Figure 5. 

 

 

Figure 5 MES architecture for the hybrid scheduling system 
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2.5. Data Model 

A baseline data model for the PERFoRM project has already been created in Work Package 2 (WP2). 

However, the model is not adequate for the requirements of Task 4.2. Therefore, the PERFoRM data 

model has been extended by introducing additional classes. The class diagram for the model is shown in 

Figure 6. 

 

 

Figure 6 Data model for Task 4.2 
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Operation: The Operation class is a representation of a manufacturing operation 

 ID: A unique identifier for an operation 

 Name: Name of the operation 

 OperationType: Type of the operation (Cellular, Non-Cellular) 

Workstation: The Workstation class is a representation of an area in which a group of resources can be 

arranged 

 ID: A unique identifier for a workstation 

 Description: Description of the workstation 

Resource: The Resource class is a representation an actual equipment 

 ID: A unique identifier for a resource 

 Name: Name of the resource 

 ResourceType: The type of resource (Machine Tool or Micro-Flow Cell) 

 Workstation: The workstation in which the resource is physically located 

 Operations: The list of operations that the resource can perform 

Part: The Part class is a representation of a part to be manufactured 

 ID: A unique identifier for a part 

 Name: Name of the part 

 ReleaseTime: The time the part enters the system 

 DueTime: The time the part is due 

 OperationSequence: The list of operation sequence item for manufacturing the part 

SequenceItem: The SequenceItem class is a representation of a part-specific operation 

 Part: The associated pat 

 Operation: The associated operation 

 SequenceNo: The execution order of the operation for the part 

OperationExecution: The OperationExecution class defines the process parameters for a part and 

operation on a resource 

 Part: The associated part 

 Operation: The associated operation 

 Resource: The associated resource 

 ProcessingTime: The time for processing the part on the resource 

 UnitTimeEnergy: The energy consumed during the processing of the part on the resource 
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OptimisedScheduleItem: The OptimisedScheduleItem class is a representation of a schedule item 

generated by global schedule optimiser 

 Part: The associated part 

 Resource: The associated resource 

 StartTime: The time the part seizes the resource 

 FinishTime: The time the part releases the resource 

ExecutedScheduleItem: The ExecutedScheduleItem class is a representation of a schedule item executed 

by agents 

 Part: The associated pat 

 Resource: The associated resource 

 StartTime: The time the part seized the resource 

 FinishTime: The time the part released the resource 

 

2.6. Agents Modelling, Simulation and Development Tools 

There are several definitions of Agent-Based Modelling (ABM) in the literature, but from a practical 

point of view, ABM can be defined essentially as decentralised, and individual-centric approach to model 

design. When designing an agent-based model, the active agents of the system are identified, and their 

behaviors are defined. The global behavior then emerges from the interactions among the individual 

behaviors. An agent is simply regarded as an entity or software abstraction that is similar to object-

oriented programming concepts such as objects, attributes and methods. However, an agent presents a 

distinctive level of abstraction. Instead of being expressed in terms of attributes and logic-based methods, 

an agent is expressed in terms of behaviour and interaction with its environment. In a practical sense, an 

agent is anything that can perceive its environment through sensors and then act in response. 

In recent years, the ABM community has developed several tools for developing agent-based 

applications. The tools differ greatly in features, but a comprehensive comparative study of the entire 

spectrum of tools is beyond the scope of this report. 

The toolkits that have been chosen for modelling, simulation and development work in Task 4.2 are 

covered in this report.  
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2.6.1. Java Agent Development Framework 

JADE is an opensource software framework for developing peer-to-peer agent-based applications in 

compliance with the Foundation for Intelligent Physical Agents (FIPA) specifications for interoperable 

intelligent multi-agent systems. FIPA is an organization that promotes agent-based technology and the 

interoperability of its standards with other technologies. JADE supports the majority of the FIPA 

specifications, making it an ideal choice for agent simulation and development. 

JADE is completely developed in Java language and it simplifies the implementation of multi-agent 

systems through a middleware and a set of graphical tools for debugging and deployment. A JADE-based 

system can be distributed across heterogenous machines and the agents can be moved from one machine 

to the other as and when required. JADE also provides a powerful task execution and composition model, 

peer-to-peer agent communication based on the asynchronous message passing paradigm, a service 

supporting publish subscribe discovery mechanism and many other advanced features that facilitate the 

development of a distributed system [21]. Figure 7 shows the FIPA agent management reference model 

and Figure 8 represents the JADE FIPA-compliant agent architecture. Agents can communicate 

transparently regardless of whether they live in the same container (e.g. A2 and A3), in different 

containers (in the same or in different hosts) belonging to the same platform (e.g. A1 and A2) or in 

different platforms (e.g. A1 and A5). 

 

Figure 7 FIPA Agent management reference model 
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Figure 8 JADE architectural elements 
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2.6.2. Workflow and Agents Development Environment (WADE) 

WADE is an opensource software platform for workflows and agents-based application. It is an 

extension of JADE, inheriting the basic elements of JADE such as agents, behaviours and messaging. In 

addition to the inherited JADE features, WADE provides support for the execution of tasks using the 

embedded lightweight workflow engine.  The tasks to be performed by agents, their execution steps and 

sequences, their activation and termination criteria and other information that are required to complete the 

tasks are explicitly defined using the workflow metaphor. This makes it possible to create automatic 

mechanisms that trace the execution of a workflow thus facilitating system monitoring and problem 

investigation. Each agent is equipped with a set of workflows that it executes depending on the dynamic 

situation. One of the main advantages of the workflow approach is the possibility of representing 

processes in purely graphical forms. WADE comes with a development environment called WOLF that 

facilitates the creation of workflows using a graphical editor. The WADE suite (Figure 9) also includes a 

web administration console, web services and a module for persisting the state of running workflows in a 

database. 

 

 

Figure 9 Components of a WADE-based application 
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2.6.3. AnyLogic Simulation Software 

AnyLogic is a professional software for building multimethod simulation models (discrete event, 

system dynamics and agent-based) across a wide range of industries. Agent-based models can be easily 

combined with discrete event and system dynamics techniques in a single model to simulate business 

processes of any complexity. A model can be configured from an external data source when the model is 

run, which means that a whole model structure can be modified by simply changing the input data. This 

makes models reusable and many similar challenges can be solved without additional model-building 

effort. 

  Although AnyLogic as an agent-based simulation framework is not compliant with FIPA 

specifications for interoperable and multi-agent system, it includes a graphical modeling language and 

simulation models are extendeable using Java language.  AnyLogic provides the basic building blocks for 

designing and implementing agents using constructs that facilitate the manipulation of an agent's beliefs, 

goals, communication and decision-making structure.  
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3. Flexible Job-Shop Optimisation 

3.1. Problem Formulation 

The flexible job-shop scheduling problem is formulated as follows. Let P = {P1, P2, ….. Pn} be a set of 

n parts to be processed on m machines M = {M1, M2, …. Mm}, which are arranged in functional and 

cellular layouts. Each part Pi consists of a set of operations Oi = {Oi1, Oi2, …. Ois} that must be processed 

on a set of machines according to a predefined order. Each operation Oij must be performed by one out of 

a set of available machines; the processing time is denoted by tijk and the unit time energy cost is denoted 

by eijk for machine Mk. The objective is to determine an assignment and a sequence of the operations on 

the machines to minimise weighted sum of energy and tardiness costs. The definition of parameters are as 

follows: 

n total number of parts 

s total number of operations for each part 

m total number of machines 

Pi the i
th
 part 

Mk the k
th
 machine 

Oij the j
th
 operation of the i

th
 part 

eijk the unit time energy cost of processing the j
th
 operation of the i

th
 part on the k

th
 machine 

tijk the processing time of the j
th
 operation of the i

th
 part on the k

th
 machine 

 

The assumptions and constraints on the parts and machines are listed as follows: 

 All machines are available at any time 

 All parts are released at time t = 0 

 Each machine (and Micro-Flow cell) can process only one part at a time 

 There are no precedence constraints among operations of different parts 

 The sequence of operation is predefined and cannot be modified i.e. operation Oij must be 

completed before operation Oij+1 

 No operation preemption. i.e. an operation cannot be interrupted on a machine once started 

until it is completed 
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 All cellular operations of a part must be processed in the same Micro-Flow cell 

 A part can visit a machine more than once 

3.2. Genetic Algorithm 

Genetic algorithm is a heuristic search method used in artificial intelligence and computing to find 

optimised solutions to search problems based on the theory of natural selection and evolutionary biology. 

The method begins with a population of individuals, which represents a set of potential solutions in the 

search space. An individual in the population is assigned a fitness value according to a problem-specific 

objective function. The individuals attempt to combine the good features in each parent in the population 

using reproduction operators to construct offspring which are fitter than the previous generations. 

Depending on the needs of the application, the procedure continues until an acceptable solution is derived 

or until a certain number of generations have passed. 

The key elements of genetic algorithm are the type of chromosome representation that is used, the 

crossover operator, mutation operator and the selection method. The details of the model developed in this 

task are explained using the data shown in Table 1.  A value of 1 in the machine column indicates that the 

corresponding operation can be processed by the machine while the value of 0 indicates the opposite.  

 

Table 1 Operations and machines assignment data 

Part Operation Machines 

M1 M2 M3 M4 M5 M6 

1 

 

 

O11 1 1 0 0 0 0 

O12 0 0 1 1 0 0 

O13 0 0 0 0 1 1 

2 O21 1 1 0 0 0 0 

O22 0 0 1 1 0 0 

O23 0 0 1 0 1 1 

O24 0 0 0 0 1 1 

3 O31 0 0 0 0 0 1 

O32 0 0 0 1 1 0 

O33 1 0 0 0 1 1 

4 O41 1 1 0 0 0 0 

O42 0 0 1 1 0 0 

O43 1 1 0 0 0 0 
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O44 1 0 1 0 0 0 

O45 0 0 0 0 1 1 

 

The model adopted in this task is based on the algorithm proposed by Du & Xiong [22] for a flexible 

job-shop scheduling problem. The algorithm has been modified to account for the combination layout 

scenario described in Section 2.   

According to Table 1, a matrix called the operation-machine matrix, Mop, is derived. It represents the 

constraint model of relation between operations and machines. The machines and operations are arranged 

along the rows and columns of the matrix respectively. If the element Mom (i, j) = 1, then the operation in 

the j
th
 column can be processed by the machine in the i

th
 row. 

 

𝑀𝑜𝑚  =  

[
 
 
 
 
 
1 0 0 1 0 0 0 0 0 1 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 1 0 1 1 0 0 0 0 1
0 0 1 0 0 1 1 1 0 1 0 0 0 0 1]

 
 
 
 
 

 

 

A second matrix called the part-operation matrix, Mpo, is also derived. The matrix represents the 

constraints between parts and operations. The parts and operations are placed along the columns and rows 

respectively. If the element Mwp (i, j) = 1, then the operation in the i
th
 row belongs to part in the j

th
 column. 

 

𝑀𝑝𝑜 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1]
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3.2.1. Chromosome Encoding 

A chromosome is a symbolic representation of a feasible schedule. Most previously adopted 

representations are one-dimensional but a 2-dimensional operation-based encoding is used for the flexible 

scheduling problem. The chromosome representation has two components; operation sequence component 

(OS) and the machine selection component (MS).   The OS component values represent the sequence of 

operation while the MS component values represent the machine that is selected to process the 

corresponding operation.  

A valid chromosome for the problem in Table 1 is shown in Table 2. According to Table 1, there are 

15 total operations, so the length of the chromosome is 15.  The genes of the OS component are filled with 

random numbers generated from 1 to 15. The operations are scheduled in the order of their values.  The 

MS component values are obtained by choosing a machine from the set of available machines for an 

operation during population initialisation. For instance, M5 has been selected to process operation O24 

since the corresponding value is 5. The value could also be 6 since M6 is among the available machine set 

for the operation. 

Table 2 Chromosome 

 O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O41 O42 O43 O44 O45 

OS 15 3 5 4 11 12 7 10 9 8 2 14 1 6 13 

MS 2 5 4 1 2 3 5 6 4 6 3 1 2 6 1 

 

3.2.2. Chromosome Decoding 

A decoding scheme is required to ensure that the chromosome produces a feasible schedule. The 

chromosome decoding is described in the following steps: -  

Step 1 Select the operation with the minimum value of OS and determine the part that the operation 

belongs to. For instance, the operation with the minimum OS value in Table 2 is O43, which belongs to 

part 4. 

Step 2: Search through the corresponding part column of matrix Mpo and select the first operation with 

value equal to 1. This preserves the relative precedence constraints in the operations of the same part. For 

instance, the operations in column 4 of matrix Mpo with values equal to 1 are O41, O42, O43, O44, O45. The 

first operation is O41, so it is selected 

Step 3: According to the selected part and operation, set the corresponding element of matrix Mpo to 0. 

This effectively removes the operation from the matrix so that it will not be considered in the subsequent 

iterations. 

Step 4: Repeat step 1 to 3 for the other operations. 
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The sequence of operation after decoding the chromosome in Table 2 is given as follows: 

O41 - O42 - O11 - O21 - O12 - O43 - O22 - O31 - O32- O33 - O23 - O24 - O44 - O45 - O13 

The first operation is scheduled first, followed by the second operation, and so on. A schedule 

generated by the procedure is guaranteed to be feasible, so no repair mechanism is required for the 

chromosomes. 

3.2.3. Initial Population Generation 

Population initialisation is a crucial task in genetic algorithm because it affects the feasibility and 

quality of the final solution. The initial population generation for the OS and MS components of 

individuals are done in stages.  The method for assigning machines to operations considers the cost to be 

minimised and the location of the machine. Since the machines are arranged in workstations and Micro-

Flow cells, all cellular operations of a part are constrained to the same cell. 

Step 1: Create an operation-machine matrix, Mop, and initialise based on the available machine set for each 

operation 

Step 2: Create an array to hold the available time of all machines and initialise to 0 

Step 3: Randomly fill the operation sequence component of the chromosome with values from 1 to 15 

without any repetition 

Step 4: Decode the operation sequence component as described earlier. For each operation, calculate the 

weighted sum of energy and tardiness costs for each machine in the available set as follows: 

 

            𝛼(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑖𝑚𝑒  𝑥 𝑈𝑛𝑖𝑡 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝐶𝑜𝑠𝑡)  

+  𝛽(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑥 𝑈𝑛𝑖𝑡 𝑇𝑖𝑚𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡                               (1) 

 

Step 5: Select the index k of the machine which has the lowest value. If there is a tie, a machine is 

randomly selected 

Step 6: Add the processing time of the operation on the machine to the current available time of the 

machine 

Step 7: If the operation is in a cell, then reduce the available machines for performing the remaining 

cellular operations of the part to the same cell by setting their values to 0 in the Mpo matrix. 

Step 8: Repeat step 3 to 7 until all operations have been selected. 
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3.2.4. Fitness Evaluation 

Fitness evaluation involves the definition of an objective function to be used for determining the 

suitability of a chromosome for reproduction. The fitness function is defined as fit(c) = 1/fc, where fc is 

the weighted sum of total tardiness and energy costs for the schedule produced by a chromosome. 

                                                                𝑓𝑐  =  𝛼𝑇𝑐  +  𝛽𝐸𝑐                                                                  (2)  

                                               𝑇𝑐  =   ∑𝑚𝑎𝑥(0, 𝐶𝑖  −  𝐷𝑖)   × 𝑈𝑖

𝑛

𝑖=1

                                                 (3) 

                                          𝐸𝑐  =   ∑∑𝑡𝑖𝑗𝑘

𝑠

𝑗

𝑛

𝑖=1

× 𝑒𝑖𝑗𝑘           𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠    (4) 

where  

α is the weight of total tardiness cost Tc 

β is the weight of total energy cost Ec 

Ci is the completion time of the i
th
 part 

Di is the due time of the i
th
 part 

Ui is the tardiness cost per unit time that the i
th
 part exceeds its due date 

 

3.2.5. Genetic Operators 

Selection Strategy: At each iteration, the best chromosomes are chosen for reproduction using the 

tournament selection method. 

Crossover Operator: 

The choice of crossover operator is very important in genetic algorithm, and consequently a wide range of 

crossover operators have been proposed for flexible job-shop problem. Crossover operators are application 

and chromosome dependent. The crossover operator is applied to the operation sequence chromosome 

only while the assignment of machines to operations is preserved in the offspring. An ordered crossover 

operator is used so that relative order information can be transmitted to the offspring. The crossover 

procedure is described as follows: 
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     Parent 1 

Operation 11 1 4 2 12 10 3 5 13 8 14 6 9 15 7 

Machine 2 2 1 3 3 6 5 4 1 6 1 6 4 6 5 

 

       Parent 2 

Operation 9 2 11 12 8 4 1 13 3 6 10 5 7 14 15 

Machine 5 4 1 4 6 2 1 2 6 3 5 3 6 3 5 

 

Step 1: Create two random crossover points and copy the consecutive alleles between the points from 

the operation chromosome of the first parent into the first offspring 

Step 2: Starting from the second crossover point in the second parent, copy the remaining unused 

alleles from the second parent to the first offspring, wrapping around the list 

Step 3: Copy the corresponding alleles from the machine selection chromosome of the first parent into 

the first offspring 

Step 4: Repeat step 1 to 3 with parent roles reversed to get the second offspring 

 

Parent 1 

Operation 11 1 4 2 12 10 3 5 13 8 14 6 9 15 7 

  

Parent 2 

Operation 9 2 11 12 8 4 1 13 3 6 10 5 7 14 15 

 

    12 10 3 5 13 8      

 

Offspring 1 

Operation 
11 4 1 6 12 10 3 5 13 8 7 14 15 9 2 

 

      Offspring 1 

Operation 11 4 1 6 12 10 3 5 13 8 7 14 15 9 2 

Machine 2 1 2 3 3 6 5 4 1 6 5 1 6 4 3 

 



PERFoRM 
Horizon 2020 – Factories of the Future, Project ID: 680435 

 

 

D4.2 Energy and agent-based planning and (re)-scheduling of production 
 

29/62 

 

Mutation Operator: 

Mutation operators are generally applied to introduce and maintain diversity from one generation of a 

population of chromosome to the next, thereby preventing the evolutionary process from being trapped in 

a local optimum. In this study, mutation is applied to the operation sequence and machine selection 

chromosomes as described in the following steps: - 

Step 1: Choose two low probability threshold values for mutating the operation sequence and machine 

selection chromosomes respectively.  

Step 2: Loop through the chromosome from left to right and generate a random probability value for 

each position.  

Step 2a: If the randomly generated probability value is less than the machine selection chromosome 

mutation probability, set the machine allele in that position to an adjacent machine from the alternating 

machine set for the corresponding operation. 

Step 2b: If the randomly generated probability value is less than the operation sequence chromosome 

mutation probability, then swap the operation and machine in that position with the ones in another 

randomly selected position. This should only be done for non-cellular operations. 
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4. Agent-Based Scheduling Mechanism Design 

Complex production systems are subject to unexpected disruptions that conventional monolithic 

planning and scheduling systems are not designed to deal with. Multi-agent systems have been proven to 

excel in such dynamic environments [7, 8, 9]. The shortcomings of static scheduling algorithms can be 

compensated for by using multi-agent systems to improve the overall performance of production systems. 

The real-time decision-making capabilities of agents provide a high degree of flexibility and adaptability 

to unpredictable changes that may occur during manufacturing process. 

This section is focused on the design of a multi-agent control architecture that enables interaction and 

negotiation among various agents in a manufacturing shop floor to produce a feasible schedule in the face 

of stochastic events such as: 

 Introduction of new parts into the manufacturing system during the execution of existing 

known parts 

 Changes in parts due dates 

 Dynamic changes in parts sequence of operation 

 Removal of resources due to failures 

 Addition of resources to minimise bottlenecks 

 Correction of defective or non-conforming parts after inspection 

 

The agent architecture in this task was designed following the “DACS- Designing Agent-based Control 

Systems” methodology for production control, developed at DaimlerChrysler’s research labs in Berlin 

[23].  The goal of the methodology is to produce a design that specifies the agents of the control system, 

and how each agent negotiates with the other agents to achieve desired objectives. The steps involved in 

the methodology are as follows: 

 Analysis of control decisions: The control decisions that are necessary to operate the 

production process are identified and analysed through exercises conducted with GKN 

personnel. The aim of the exercises was to understand requirements and to establish common 

needs and expectations. The control decisions and dependencies are analysed and incorporated 

into a decision model. 

 Identification of agents: The agents that form the multi-agent system, the decisions they are 

responsible for, and how they interact with other agents are all identified in this step. A system 

consisting of four agent types was designed in accordance with the overall objectives of the 

planning and scheduling system. 

 Selection of interaction protocol: To facilitate the interaction and cooperation among the 

agents, four interaction protocols are used. 
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4.1. Agents and Characteristics 

In agent-based modelling, software agents are used to represent the individual active components of a 

system. Although there is no agreed definition of software agents in the literature, most researchers agree 

on some characteristics of agents such as the ability to make decisions without external influence 

(autonomy), ability to communicate with other agents (sociable), ability the perceive its environment and 

respond to changes (reactive) and the ability to take initiatives in achieving its goals (proactive). The 

following requirements are considered in designing the agent-based architecture (Figure 10) : - 

 Autonomy and Social Ability: Each agent has its own goal and must be able to make 

decisions based on local knowledge and in collaboration with other agents. There is no shared 

knowledge of state in distributed systems, so the overall behaviour of the system emerges from 

the interactions among the individual agents. 

 Flexibility and Adaptability: The agents must be able to adapt automatically to unexpected 

changes in production environment. To achieve this, the agents needs to be aware of their 

environment and then act proactively in response to whatever information they receive. For 

example, if a resource breaks down, the resource agent should be aware, and information 

should be sent to the concerned agents. If the breakdown occurs during the processing of a 

part, the part agent should be informed so that it can find an alternative resource that will 

achieve its goals. 

 Plug and Produce: Plug and produce is a concept that allows resources to be quickly added 

and removed from a manufacturing process. To enable this functionality, the multi-agent 

system is designed to allow creation and destruction of agents living in a population at runtime. 

Agents are created dynamically as resources or parts are introduced into the manufacturing 

process and are destroyed when removed. 

 

The framework developed in Task 4.2 consists of the following types of agents: 

 Resource Agent (RA): Resource agents are used to represent the manufacturing devices on the 

shop floor. Although the machine tool and Micro-Flow cells could have been represented using 

separate agents, for the scenario in consideration, it suffices to represent them using a common 

agent. Resource agents hold information about the status and operational data (energy 

consumption and processing time) of resources. The agents are created when devices are 

introduced into the shop floor and are destroyed when removed. 

 Part Agent (PA): Part agents represent the parts to be manufactured. Part agents hold 

information about the operations, workflow and other information that are required to 

manufacture the part they represent. The agent also keeps track of the parts status at any given 

time. The lifecycle of a PA begins when the part is released into the production processed. 

During its existence, the agent negotiates with other agents to find suitable resources for 

executing operations during its manufacturing process. The agent will be destroyed when the 

part is completed or cancelled. 
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 Schedule Optimisation Agent (SOA): The Schedule Optimisation Agent is a broker that 

facilitates communication, collaboration and coordination among resource agents and part 

agents using the requirements and capabilities of the agents. It has a much global view of the 

overall system and its function is to optimise the scheduling plan to achieve the best possible 

overall performance. 

 Shop Management Agent (SMA): One way to implement modular support in agent-oriented 

programming is to define middleware that are themselves implemented as software agents. The 

Shop Management Agent is a representation of the Directory Facilitator (DF) agent and the 

Agent Management Service (AMS) agent that are specified by FIPA. The SMA maintains a 

directory of all running agents and receives status information from. Agents can query the 

SMA to get information about the services offered by the other agents, including the agents 

that can provide the services required by the agents. 

 

Table 3 Agents tasks and required information 

Agent Type Tasks Required Information 

Resource Agent  Inform SMA and PA 

about availability 

 Manage reservation 

queue 

 

 Operational data (processing 

time, energy consumption and 

costs etc.)  

 Reasoning mechanism for 

preparing bids 

 Reservation queue 

 Status information (idle, busy, 

down) 

Part Agent  Manage parts processing 

and workflow 

 Negotiate with SMA and 

RA to find the best 

resources 

 Inform SMA about status 

 Process operations and 

sequence (e.g. milling, 

cleaning, deburring, inspection 

etc. 

 Due dates 

 Tardiness costs 

Schedule 

Optimisation 

Agent 

 Mediate between PA and 

RA 

 Match parts processing 

requirements 

appropriately with 

resources  

 Initial statically optimised 

schedule 

 Operational data (processing 

time, energy cost) 

 Tardiness costs  

 Resources availabilities 

Shop 

Management 

Agent 

 Instantiate and destroy 

agents in population 

 Keeps track of all 

resources and parts status 

 

 Objective function parameters 

 Resources and parts status via 

messages from RA and PA 
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Figure 10 Multi-agent architecture for scheduling 

4.2. Communication Acts 

Coordination and cooperation are required among autonomous agents to efficiently complete a given 

task since no single agent has sufficient competence, resources and information to complete the task. 

Communications in a multi-agent system are achieved by exchanging messages. For agents to have any 

meaningful interaction, it is imperative that they use the same language conventions and vocabulary. 

Some communicative acts (performatives) have been defined by FIPA to achieve this. The communication 

between agents was implemented in accordance with the semantics defined in the FIPA Communicative 

Act Library. The following performatives are used in this task: 

 Request: This performative is used by a sender to ask the receiver to perform an action. For 

instance, this is used by a PA to ask an RA to execute an operation as defined in the optimised 

schedule generated from genetic algorithm. The content of the message is the description of the 
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operation to be performed including the maximum cost (waiting time) that is acceptable to the 

PA. A request message is also sent by PA to SOA to ask for assistance in finding a resource. 

 Refuse: A refuse message is sent by an RA if it is unable to execute a given operation 

requested by a PA. The reason for the refusal is contained in the message. For instance, the RA 

will respond with a refuse performative to the PA when the associated resource is out of 

service or when it is unable to meet the cost demanded by the PA. 

 Agree: An agree message is sent by an RA to inform a PA that it can perform the operation 

requested by the PA. 

 Inform: An inform message is used by a sender to inform the receiver that a given proposition 

is true. For instance, an inform message is sent by an RA or PA to communicate its current 

state to the SMA. It is also sent by an RA to inform a PA if it successfully completes an 

operation. 

 Call for Proposal: This performative is used by a SOA to call for proposals from RAs who has 

the required skills and is available to execute given operations. 

 Propose: A propose message is sent by an RA to SOA to submit a proposal for performing a 

certain operation, given certain preconditions (waiting time, processing time, energy 

consumption). This is in response to an earlier call for proposal message from SOA to the RA. 

 Accept Proposal: An accept proposal message is sent by SOA to an RA to inform the RA of 

the acceptance of a previously submitted proposal to perform an operation. 

 Reject Proposal: A reject proposal message is sent by the SOA to an RA to reject a proposal 

submitted by the RA for performing an operation. The reason for the rejection is included in 

the message. 

 Query Ref: A query-ref message is used to ask another agent to inform the requester of the 

object identified by a descriptor. For instance, it is used by the SOA to query the SMA for 

available resources that can execute the operations required by a PA. 

 Proxy: A proxy message is used when the sender wants the receiver to select target agents 

denoted by a given description and to send a message to them. For instance, a PA sends a 

proxy message to the SOA when it is unable to find a resource that meets its requirement on its 

own. The SOA acts on behalf of the PA to find the best possible resource to execute the 

operations requested by the PA.  

 Confirm: A confirm message is sent by the SOA to inform a PA that it has been able to 

find a resource on its behalf. The details of the resource are sent to the PA. 
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 Failure: A failure message is used to inform the receiver that the sender could no 

longer fulfill a contract that was earlier agreed. For instance, an RA sends a failure 

message to a PA if a resource breakdown occurs during the processing a part or when 

the part is waiting on its queue. 

4.3. Interaction Protocols 

A clear policy that the agents will follow in their interactions with one another is required for them to 

achieve their shared goals. The protocols used in Task 4.2 are based on the interaction protocols defined 

by FIPA. 

4.3.1. Request 

In this protocol, a part agent sends a request message to the specific resource agent it has been assigned 

to in the initial optimised schedule. The resource agent responds with either agree or refuse message 

depending on its operational state and whether it can perform the operation within the time constraints 

specified by the part agent. If the resource agent responds with an agree performative, then the part agent 

starts waiting on the queue until it receives further messages from the resource agent (Figure 11).  

4.3.2. Brokering 

In the event that the resource agent responds with a refuse performative, then the responsibility of 

finding an alternative resource is passed on to the SOA. The part agent requests the SOA to act on its 

behalf by sending a proxy message, providing information on the time the required operation was due. If 

the operation is to be performed in a Micro-Flow cell, then the part agent also includes the list of the other 

cellular operations within its process flow. The SOA determines a set of agents to forward the request to 

by querying the SMA to get a list of all the operational resources that possess the skills required by the 

part agent. The SOA initiates a bidding process and then relays the outcome to the part agent. If the SOA 

finds a resource, a confirm message is sent to the part agent.  Otherwise, a failure message is sent (Figure 

12). 

4.3.3. Contract Net 

The SOA solicits proposals from the capable and available resources by issuing a call for proposals 

with a description of the operations, but without placing any conditions on the execution of the operations. 

Since all the recipient resource agents can perform the required operations, they all respond with 

processing time, energy consumption and existing reservations information. The SOA decides the best 

resource and then communicate the result to the bidding agents using either accept proposal or reject 

proposal performatives (Figure 13).  

4.3.4. Inform 

The inform-only protocol is used by resource and parts agents to inform the SMA of any changes in 

their states.  
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Figure 11 Request interaction protocol 
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Figure 12 Brokering interaction protocol 
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Figure 13 Contract net interaction protocol 

4.4. Agents States, Transitions, Actions and Events 

The basic elements of discrete time simulation are states, transitions, actions and events. The global 

state of a manufacturing system is decided by the status of the distributed entities at various levels. A 

transition indicates that if a specified trigger event occurs, entities switch from one state to another and 

performs a specified action. Events are used to model delays and timeouts for actions scheduling. In this 

section, the possible states, transitions, actions and events of entities are described.  
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4.4.1. States 

The Optimisation Agent and Shop Management Agent are passive agents in that they only execute 

events and react to message arrivals, but do not maintain states. 

A Resource Agent can be in Idle, Busy or Down states. The Idle and Busy are simple states that are 

embedded in Operational composite state (Figure 14). The states are explained as follows: 

 Idle: The resource is in this state when it is waiting for a part to be processed.  

 Busy: The resource in this state when it is processing a part. 

 Down: The down state is the period from breakdown of the resource to its recovery 

 

 

Figure 14 Resource agent state chart 

 

A Part Agent can be in one of many states, but the key ones are NotReleased, 

NegotiatingWithResourceAgent, NegotiaingWithOptimisationAgent, QueingForProcessing, OnResource 

and Complete (Figure 15). The states are explained as follows: 

 NotReleased: The agent is in this state when the simulation time has not reached its release 

time attribute value 
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 NegotiatingWithResourceAgent: The agent is in this state when it is negotiating directly with 

resource agents to find the best offers for executing specific operations. This is a composite 

state consisting of WaitingForNextOperationToStart, SendingRequestToResourceAgent and 

WaitingForResourceAgentReply sub-states. 

 NegotiaingWithOptimisationAgent: The agent is in this state when it contacts the optimisation 

agent to find resources on its behalf. It consists of SendingRequestToOptimisationAgent and 

WaitingForOptimisationAgentReply sub-states. 

 QueingForProcessing: The agent is in this state when an agreement has been reached with a 

resource, but the part cannot be processed immediately (i.e. waiting on queue).  

 OnResource: The agent is in this state when it is being processed on a resource. It stays in this 

state for the duration of its processing time on that resource. 

 Complete: The agent transitions to this state when all its operations have been completed. 

 

Figure 15 Part agent state chart 
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4.4.2. Events, Actions and Transitions 

A Resource Agent has process messages and process reservations background events, scheduled to run 

at specified rates. The process messages event is used to process incoming messages stored in its message 

queue by the messaging mechanism of the agent platform. A part is added to the resource reservation 

queue whenever there is an agreement to process the part.  The process reservations event is used to 

process the resource reservation queue. The following events, actions and transitions are initiated by a 

resource agent: 

 Seize: The seize transition is fired by the process reservation event when the resource agent is 

in Idle state, immediately after sending an invitation message to a selected part from its 

reservation queue based on a defined priority rule. When this transition occurs, the resource 

agent changes to Busy state and the concerned part changes from QueingForProcessing state to 

OnResource state. 

 Release: The release transition occurs when a part exits a resource, the resource state changes 

from Busy to Idle. An inform message is sent to the part agent and its state changes from 

OnResource to either NegotiatingWithResourceAgent or Completed state depending on the 

process status of the part.  

 Failure/Repair: Resource failure is modelled as a stochastic event with known probability 

distribution. It is assumed that failure occur only when a resource is in Busy state, changing its 

state to Down. A repair event is triggered after the time it takes to repair the resource and the 

resource transitions to Operational (Idle) state. The failure and repair transitions are triggered 

at rates defined using a triangular distribution function. Meanwhile, the interrupted part 

receives a message to this effect and then transitions to NegotiaingWithOptimisationAgent 

state to find an alternative resource. Part agents that are waiting in the resource queue also 

receive the failure message. 

4.5. Routing and Sequencing Rules 

In flexible scheduling, routing and sequencing rules are needed to deal with machine selection from a 

set of alternative machines as well as \determining the order in which machines should process the parts 

waiting in their queues to get the most optimum results. It is not always feasible to find optimal solutions 

in dynamic environments because greedy choices are made at each step to ensure that the objective 

function is optimised. Decisions are made on the fly and it impossible to reverse the decisions.  

The priority sequencing rules that are commonly used in operations planning and scheduling are first-

come, first-served (FCFS), shortest processing time (SPT), minimum number of operations (Min NoP) 

and earliest due date (EDD). There are other variants of processing time, number of operations and due 

dates related priority rules. To use these priority rules, information on each part’s processing requirements, 

due dates, operations completed, and the remaining operations are required.  Identifying the best priority 

rule to use at a particular stage in the process is a complex problem because the rule applied determines 

the sequence of operation, which in turn determines the sequences of operations downstream. 
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As explained in section 2, the initial schedule created by the genetic algorithm has machine 

assignment, start time and finish time for every operation in a part’s process flow. The start time of every 

operation creates a new priority rule known as the earliest operation due time (EODT). When the 

optimisation agent receives brokering requests for an operation from multiple part agents, the part with the 

EODT is first pushed to the resource that provides the least weighted sum of operation tardiness and 

energy costs. The resources process the parts in their queue using FCFS rule to respect earlier 

commitments. Parts that are introduced after the initial schedule has been generated do not have operation 

due time. In this case, the optimisation agent uses the overall due time to establish priority.  
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5. Simulator Implementation and Results 

A simulator is required for analyzing the system behavior and its performance, compare alternative 

system design and to determine the effects of alternative policies on system performance. This section 

focuses on the development of a simulator for evaluating the algorithms and solutions developed in Task 

4.2. The simulator was developed in AnyLogic 

5.1. Model Classes 

Agents are main building blocks of AnyLogic models, which are created by extending the in-built 

Agent class. The base Agent class provides functionalities for sending and receiving messages, events 

handling and states maintenance.  Within an agent, variables, parameters, events, state charts and process 

flow charts can be defined. An agent can execute multiple operations at the same time and the message 

passage mechanism routes messages appropriately to the connected state chart. 

Agent can represent a single agent or population of agents. A population represents a collection of 

agents of the same type. For instance, the SMA and SOA are single agents whereas the RA and PA are 

population of agents. The following classes are defined in the AnyLogic simulator: 

Performatives: The Performative is an enumeration type that defines the performative constants listed 

above. 

Message: The Message class is a representation of the ACL message for communicating between agents. 

This is required because AnyLogic does not have a specific class for creating message objects. The 

attributes contained in the class are: 

 Sender: The agent that sends the message 

 Receiver: The recipient agent of the message 

 Performative: The intention of the sender (e.g. Request, Inform) 

 Content: The main content of the message 

 ContentObject: This is used to attach a complex type to a message 

 ConversationId: Is used to link messages in the same conversation. This enables agents to 

identify individual conversations and to reason across historical records of conversations 

PartAgent: The PartAgent class inherits AnyLogic Agent class and its attributes are as defined in the data 

model. The class also has variables for status tracking.  

ResourceAgent: The ResourceAgent class inherits AnyLogic Agent class and its attributes are as defined 

in the data model. The class also has variables for status tracking and part queue management.  

OptimisationAgent: The OptimisationAgent class inherits AnyLogic Agent class. 
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ShopManagementAgent: The ShopManagementAgent class inherits AnyLogic Agent class. It has 

parameters to maintain the list and states of all agents in the platform. 

State represents a location of control with a set of reactions to conditions and/or events. Events are used 

to schedule actions in AnyLogic. All the classes have events that are fired at specified rates for processing 

incoming and outgoing messages. The interaction between different agents are being handled by the 

AnyLogic message passing mechanism. Sophisticated time-driven behaviour that cannot be defined using 

events are implemented using Statechart. State charts are used to visually capture the discrete states of 

parts and resources agents. Transitions in state charts are triggered by user-defined conditions. 

AnyLogic models have in-built integrated relational database for reading input data and writing 

simulation outputs. The UML class diagram designed in Section 2 was transformed into a relational data 

model (database tables) for the AnyLogic simulator.  The needed data are stored in the database and the 

population of parts and resources agents are created dynamically from the database during runtime. 

The main page of the simulator is shown in Figure 16. It has been designed in such a way that allows a 

user to test various optimisation criteria and dispatch rules.  Sample plant layout page generated based on 

the data stored in the database is shown in Figure 17. Sample state transitions for a resource and part agent 

during simulation are also shown in Figure 18 and Figure 19 respectively.   
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Figure 16 Simulator main page 
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Figure 17 Plant layout in simulator 
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Figure 18 Resource agent state transition during simulation 
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Figure 19 Part agent state transition during simulation 
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5.2. Simulation Results 

The resources, operations and parts data used for test simulation are shown in Tables 4 to 9.  

 

Table 4 Resources, operations and energy costs data 

Resource Operations Location Energy Cost 

/Unit Time 

M1 Cleaning, CMM, Deburring, Inspection Micro-Flow Cell A 11 

M2 Cleaning, CMM, Deburring, Inspection Micro-Flow Cell B 10 

M3 CNC/Milling A Workstation A 13 

M4 CNC/Milling A Workstation A 11 

M5 CNC/Milling B Workstation B 9 

M6 CNC/Milling B Workstation B 8 

M7 CNC/Milling B Workstation B 12 

 

Table 5 Parts due time and tardiness costs data 

Part Due Time Tardiness Cost/Unit Time 

Part 1 48 12 

Part 2 58 15 

Part 3 40 10 

Part 4 52 20 

 

Table 6 Processing time of Part 1 

Part 1 

Operation M1 M2 M3 M4 M5 M6 M7 

CNC/Milling A (O11) - - 6 6 - - - 

CMM (O12) 6 8 - - - - - 

Inspection (O13) 10 12 - - - - - 

CNC/Milling B (O14) - - - - 12 14 10 
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Table 7 Processing time of Part 2 

Part 2 

Operation M1 M2 M3 M4 M5 M6 M7 

CNC/Milling B (O21) - - - - 6 10 4 

Deburring (O22) 14 18 - - - - - 

CMM (O23) 8 12 - - - - - 

CNC/Milling A (O24) - - 22 24  - - - 

 

Table 8 Processing time of Part 3 

Part 3 

Operation M1 M2 M3 M4 M5 M6 M7 

CNC/Milling B (O31) - - - - 16 18 12 

Cleaning (O32) 10 14 - - - -  

CNC/Milling A (O33) - - 4 6 - -  

 

Table 9 Processing time of Part 4 

Part 4 

Operation M1 M2 M3 M4 M5 M6 M7 

CNC/Milling A (O41) - - 16 22 - - - 

Cleaning (O42) 4 8 - - - - - 

CMM (O43) 10 12 - - - - - 

CNC/Milling B (O44) - - - - 22 26 20 

 

The data show in the above tables are used as inputs to the genetic algorithm optimiser developed in 

Section 3. The energy and tardiness cost coefficients are taken to be 1 in this case. The chosen population 

size is 100, which was evolved over 50 generations. The optimal allocation of resources to parts and the 

associated schedule generated from the algorithm are shown in Tables 10 and 11 respectively. 
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Table 10 Optimal allocation of resources to parts operations generated from genetic algorithm 

Resource Operations 

M1 O22, O42, O43, O23 

M2 O12, O32, O13 

M3 O41, O24 

M4 O11, O33 

M5 O44 

M6 O31 

M7 O21, O14 

 

Table 11 Optimal schedule generated from genetic algorithm 

Part Operation Resource Start Time Finish Time 

Part 1 O11 M4 0 6 

Part 1 O12 M2 6 14 

Part 3 O31 M6 0 18 

Part 4 O41 M3 0 16 

Part 2 O21 M7 0 4 

Part 3 O32 M2 18 32 

Part 2 O22 M1 4 18 

Part 4 O42 M1 18 22 

Part 1 O13 M2 32 44 

Part 3 O33 M4 32 38 

Part 4 O43 M1 22 32 

Part 1 O14 M7 44 54 

Part 4 O44 M5 32 54 

Part 2 O23 M1 32 40 

Part 2 O24 M3 40 62 
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The resources, operations, parts and optimised schedule data were supplied to the AnyLogic simulator. 

The first test involves running the simulator without any disturbances (resource breakdown). The schedule 

produced from the agents’ interaction is shown in Figure 20 and the corresponding states of the resources 

are shown in Figure 21.  The parts and their corresponding colour keys are given in Table 12.  

 

Table 12 Schedule Gantt chart color keys 

Part  Colour 

Part 1  

Part 2  

Part 3  

Part 4  

 

As seen in Figure 20, the agents followed the optimised schedule without any deviations. The results of 

the schedule are shown in Table 13. The test was repeated under the same conditions but without 

providing the agents with any initial optimised schedule. The output schedule and the corresponding states 

of resources are shown in Figure 22 and 23 respectively. The completion times and costs of the schedule 

are shown in Table 14.  As seen from the result, the hybrid scheduler produced better solution with respect 

to the performance criteria than the greedy decision-making scheme. Due to the greedy decision-making 

scheme of the agents in the non-optimised schedule, Part 3 has no tardiness costs (early) but Part 4 has a 

very high tardiness costs.  Although the chosen performance criteria are energy and tardiness costs, the 

hybrid solution is also better with respect to other measures such as average total completion time, 

makespan, average tardiness and maximum tardiness. 

 

Table 13 Optimised schedule costs 

Part 
Completion 

Time 
Tardiness 

Tardiness 

Cost 

Part 1 59 11 121 

Part 2 70 12 180 

Part 3 42 2 20 

Part 4 61 9 180 

Total Tardiness Cost:   501 

Total Energy Cost:       1872 

Total Cost:                    2373 
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Table 14 Non-optimised schedule costs 

Part 
Completion 

Time 
Tardiness 

Tardiness 

Cost 

Part 1 62 14 168 

Part 2 63 5 75 

Part 3 39 0 (early by 1) 0 

Part 4 75 23 460 

Total Tardiness Cost: 703 

Total Energy Cost:     2048 

Total Cost:                  2751                 

 

  Another test was conducted under resource failure conditions; the resultant schedule and the 

corresponding states of the resources are shown in Figure 24 and 25 respectively. As seen in Figure 24, 

the agents followed the optimised schedule until the first failure occurred on M1. After this time, the 

optimisation agent is called upon to find alternative resources when a part is unable to make a reservation 

with the resource that has been assigned to it in the initial schedule.  
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Figure 20 Gantt chart for optimised schedule 
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Figure 21 Resources states chart for optimised schedule 
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Figure 22 Gantt chart for non-optimised schedule  
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Figure 23 Resources states chart for non-optimised schedule 
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Figure 24 Gantt chart for schedule under dynamic resource failure conditions 
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Figure 25 Resources states chart for schedule under dynamic failure conditions 
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6. Conclusions 

Traditional centralised scheduling solutions produce optimal results, however, it is well-known that 

they cannot cope with dynamic disturbances such as machine failure. Multiagent systems provide 

solutions to this problem but they also suffer from lack of optimisation due to their greedy decision-

making schemes. A multi-agent based scheduling system that is enhanced using a central optimisation 

technique has been developed in this task for a combination layout (functional and cellular) flexible job-

shop system.  

In the proposed method, a genetic algorithm is used to generate an initial optimised schedule to be 

executed by the agents. The weighted sum of total energy and tardiness costs was used as the performance 

objective. During simulation, the agents attempt to follow the schedule unless a disruption occurs, in 

which case, the part agents find alternative resources to fulfil their needs by interreacting with the relevant 

agents in the system. A simulator for evaluating the performance of the proposed concept was created 

using AnyLogic software. Although the software is not compatible with FIPA standards for developing 

multi-agent systems, a custom framework was developed to conform to the standard. 

Some simulation tests were conducted, and the results show that the output schedule has lower total 

costs when the agents are provided with an initial optimised schedule (hybrid solution), compared to when 

the agents make greedy decisions throughout. It was also shown that the agents interact to ensure that a 

feasible schedule is always produced when resource breakdown occurs. 

The developed concept will be validated and demonstrated in WP10. To achieve this, a production-

ready system developed using JADE and WADE frameworks will be integrated with the solutions 

developed in other WPs. 
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