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Abstract 

The recent advances in Information and Communications Technology (ICT) brought forward 

several new concepts such as Cloud Computing, the Industrial Internet of Things, Big Data and 

Cyber-Physical Systems, allowing for more agile, flexible, highly-scalable, distributed and thus 

far more complex systems and solutions to be developed, causing a profound change in various 

applications domains.  

In modern manufacturing, higher and higher volumes of data are thus being constantly 

generated by the manufacturing processes and systems adopting these new paradigms and 

technologies. However, only a small percentage is actually used in a meaningful way, 

originating the data “dump” phenomenon due to data volumes and rates becoming 

unmanageable. 

Aligned with PERFoRM’s Industry 4.0 vision, this documents details a modular framework for 

the implementation of a highly flexible, pluggable and distributed data acquisition and analysis 

system supported by the results of previous successful European projects, which can be used 

for both assisting in run-time decision making and triggering self-adjustment methods, allowing 

corrections to be made before failures actually occur, therefore reducing the impact of such 

events in production. Additionally, a possible implementation is thoroughly described, along 

with a few preliminary results from tests conducted under simulated conditions. 
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1. Introduction 

1.1. Objective of the Document 

This deliverable contains the outcome of Task 3.2, entitled “Real-time Process 

Information”, which encompasses the development of the means to perform real-time data 

acquisition and information extraction, the generation of predictive data to assist in run-

time decision making, as well as the detection and computation of trends, correlations and 

forecasts to predict future production parameters and trigger self-adjustment and correction 

methods.  

For this purpose the principles advocated by the Industry 4.0 movement were used as 

guidelines during the development of the task, ensuring the solution is capable of being 

integrated into a smart production environment, supporting changeable conditions at the 

shop-floor level including the plugging and unplugging of components during run-time, 

possible reconfigurations and unexpected disturbances. Additionally, this task considers the 

requirements imposed in WP1, WP2.2, WP2.4, WP7.1, WP8.1, WP9.1 and WP10.1 [1-7]. 

In line with the overall PERFoRM vision, results from previous successful R&D projects 

in the field manufacturing data acquisition and processing, as well as ambience intelligence 

were also taken into account, more concretely FP7 PRIME, IN-LIFE and the Self-Learning 

projects were used as a basis for the work documented hereafter. 

1.2. Structure of the Document 

The document is divided into six main sections. Excluding the introduction and beginning 

with Section 2, the overall approach is presented as a multidisciplinary solution, 

encompassing data acquisition, data pre-processing or preparation, data processing and 

visualization in its layered architecture. Afterwards, Section 3 describes each of these layers 

in further detail, more specifically in terms of purpose, the associated requirements, core 

functionalities and interactions of each one. Section 4 showcases a possible implementation 

based on the proposed framework, describing the applicability and technical aspects 

regarding each of the layers encompassed in Section 2. Furthermore, Section 5 presents 

some tests conducted in a simulated environment, illustrating the implementation’s 

behaviour in normal operation and under two different simulated failure settings. Finally, 

Section 6 summarizes some conclusions regarding the developments regarded in the 

document.  
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2. Real-time Data Acquisition, Processing and Visualization Approach 

Being a critical part of the PERFoRM ecosystem, the proposed solution is responsible for not 

only performing the context-aware data analysis, thus generating predictive data that can be 

used to trigger the system's self-adjustment mechanisms (e.g. reconfiguration), but also for the 

acquisition of the data itself at both the manufacturing cell and component levels. 

Additionally, a given number of requirements are imposed on the architecture's design. First 

and foremost, in line with PERFoRM's vision the architecture should be generic enough to be 

applicable to various different scenarios, being open so as to not depend on the existence of a 

single communication protocol or standard on the shop floor, thus facilitating its industrial 

integration and adoption. Moreover, it needs to be capable of adapting to changes to the process 

or its components in run-time, for instance in terms of both pluggability and changes to the Key 

Performance Indicators (KPI) to be analysed. Furthermore, data and context representation 

should follow PERFoRM's common data model in order to enable the seamless interoperability 

and data exchange between the data analysis architecture and the remaining PERFoRM system 

elements and tools. 

Another point to take into account is the aspect of scalability. In order to ensure that the 

approach is applicable to a varied number of different use cases, it needs to be capable of scaling 

according to each use case requirements. However, as a system scales its complexity tends to 

increase to higher levels as a consequence. Thus, in order to tackle this challenge, a layered 

architectural structure is proposed. An overview of this approach can be seen in Figure 1. 

 

Figure 1 - Task 3.2 Layered Approach Overview 

As depicted, the proposed architecture is divided into several layers in order to decrease the 

overall complexity, each operating according to a specific purpose on top of the shop floor, 

which stands as the base layer. Subsection 2.1 will approach the specification of the 

aforementioned proposed architecture. 
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2.1. Architecture Specification 

As previously mentioned, the architecture consists in a series of stacked layers, dividing the 

different tasks that are encompassed in the processes of data acquisition and analysis among 

them in order to decrease overall complexity and achieve a higher degree of scalability and 

adaptability. This is made possible also due to the modular and generic nature of each of 

the architectural elements, which can operate independently from the technology used in 

the remaining intervenient, so long as the communications specifications imposed by the 

generic interfaces that connect them are respected. An overview is provided in Figure 2. In 

which the grey layers in between each element represent these generic communication 

interfaces.   

 

Figure 2 - Architecture Stack Overview 

As it can be seen in Figure 2, data flows solely from the bottom to the top layer, meaning 

that the data flow consists in raw data being collected and pre-processed by the Data 

Acquisition Layer (DAL), being buffered in the Data Queue Layer (DQL), which in turn 

prepares it to be consumed by the Data Processing Layer (DPL), which can compute trends, 

forecasts and correlations to be observed in the Data Visualization Layer (DVL), as well as 

triggering appropriate corrective actions. 

The architecture is thus guided by the main principle that as long as each of the encompassed 

modules provides its designated services, exposing them through the generic interfaces and 



PERFoRM 
Horizon 2020 – Factories of the Future, Project ID: 680435 

 

 
D3.2 Real-time Process Information Exploitation  11/48 

 

respecting the requirements for scalability, robustness, pluggability and flexibility, there 

should be no dependencies in terms of underlying technology stacks or communication 

protocols. 

As such, some functionalities should be present in any implementation of the proposed 

architecture, namely: 

 The capacity for handling the plugging and unplugging of components during run-

time, acquisition and pre-processing of raw data, which should be handled by the 

DAL. 

 The integration between the DAL and DPL, supporting high throughput of data, 

handled by the DQL. 

 The analysis of incoming (possibly high-volume) streams of data, along with the 

generation of predictive data, computation of trends, forecasts and correlations, for 

which the DPL is responsible. 

 Finally, the capacity to display near real-time graphic representations of the 

different steps involved at the various stages, providing a means to better 

understand and interpret the data as well as to support run-time operations, should 

be associated to the DVL. 

Each of these layers is described in further detail in the Section 3. 
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3. Architectural Elements 

3.1. Data Acquisition Layer 

Standing directly above the shop floor layer, the DAL is responsible not only for the 

acquisition of relevant data but also by its pre-processing in terms of the extraction of 

context-aware information. In regards to the data acquisition, the DAL needs to be flexible 

in order to adapt to changes coming directly from its sources in the shop floor, be it in terms 

of new components being plugged or unplugged, or even changes to the KPIs that need to 

be collected and analysed. Also, the communication with the shop floor needs to be 

specified in a generic way, thus allowing the consideration of different requirements from 

different potential use case. For instance, a specific case might present time constraints in 

the order of weeks or days, while a different one might require data to be collected and 

analysed in near real-time, therefore requiring different approaches. To this end, the DAL 

follows an approach similar to that presented in another successful European project, FP7 

PRIME [8-10], in which a Cyber-Physical System (CPS) based approach was used. This 

approach is centred on a Multiagent System (MAS) architecture which abstracts both 

components and subsystems (e.g. cells, workstations) alike, as showcased in Figure 3.  

 

Figure 3 - DAL Multiagent System Overview 

The adoption of MAS paradigm confers additional flexibility and robustness to the DAL, 

allowing it to quickly adapt to changes in the shopfloor. No less important is the existence 

of generic communication interfaces which allow the agents to interact with the 

environment in a ”black-box” fashion, regardless of the underlying technology or 

communication standard. In PERFoRM’s case, this means that the approach can be 

implemented in a way that the agents can communicate with the hardware via the 

harmonization middleware, or if required (e.g. specific time constraints), a different 
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instantiation of these interfaces would allow an approach closer to edge computing. Upon 

collecting the raw data, the agents can pre-process it in order to extract more meaningful 

information before passing it on to the upper layers, in this case the Data Queue Layer 

(DQL), which is described in further detail in Subsection 2.2. 

3.2. Data Queue Layer 

The DQL’s main purpose is to serve as a distributed continuous buffer for the data coming 

from the DAL. It should add another layer of robustness, allowing for high-volume streams 

of data to be transported from the DAL in order to be consumed by the data analysis 

network. As such, it should provide reliability in terms of message delivery, which can be 

achieved through the sequencing and replication of data messages. More than a simple 

message queue, the DQL should be capable of not only handling a high throughput of data 

(in order for it to cope with the aforementioned varied time constraints), but also to enrich 

and filter or aggregate the buffered data as required in order to facilitate its consumption by 

the Data Processing Layer (DPL). 

3.3. Data Processing Layer 

The last core layer is the DPL, responsible for the actual data analysis of the inputs coming 

from the lower layers. In the context of PERFoRM, this analysis is meant to generate 

predictive data related to the KPIs relevant for each use case, producing forecasts and 

identifying trends and correlations between these indicators. As such, this layer enables the 

early detection of possible disturbances, degradation or KPI deviation from the expected 

boundaries in the shop floor. Hence, due to this capacity for predictive analysis, the DPL is 

a key-enabler of condition-based maintenance, allowing manufacturers to schedule 

maintenance operations before a failure actually occurs, thus diminishing the direct impact 

on production. Additionally, the DPL is not limited to assisting in run-time decision making 

(e.g. by interfacing with external data visualization tools, which are however outside the 

scope of this work), being also capable of triggering self-adjustment methods (e.g. self-

reconfiguration) which can promptly perform corrections in order to return the system to a 

state of normal operation. 

3.3.1. Generation of Predictive Data 

The generation of predictive data comprises the application of mathematical models 

(such as those based on statistical techniques) to estimate future values or “guess” 

unknown events. The development of such models is supported and researched by the 

field of predictive data analysis [11], which encompasses a class of Data Mining [12-

13], also known as predictive analytics or regression analysis. Predictive data analysis 

is applied to many fields, such as meteorology, financial markets, customer relationship 

management and others [10]. In this context, it is used to produce an output that can be 
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directly employed, for example, to control a variable or the whole system, or indirectly 

to drive and support a decision-making. Recently with the advances in sensor and data 

acquisition technologies, as well as advanced data analysis frameworks and techniques, 

more and more organizations and companies have integrated predictive analytics along 

all their operations and decision-making processes [22]. For instance, at the business 

levels, it can be used for planning tasks (expenditures, inventory and resource allocation, 

according with time and investment impacts), management tasks (failures in assets, 

improve employee allocation and productivity, reduce operational and maintenance 

costs, drive development and distribution phases. While at the operational level, it can 

be used for monitoring tasks (identify and diagnose leaks, critical issues and abnormal 

patterns), and for controlling (take action in real time to prevent fault, reduce handling 

time, alert operators of problems). The use of predictive analytics allows companies to 

better extract the value of their data and use it to improve and optimize their operations 

and processes through a more proactive and informative actions and decision-making 

[22]. 

Predictive data analysis comprises the use of several data mining techniques in order to 

analyse and extract patterns from current and past observations and build models (e.g., 

statistical inference or based on machine learning) capable to estimate values or predict 

events, usually for a future period. The predictive analytic models can be a simple 

univariate moving average model [14], which can estimate the next values based on the 

trend identified in the previous value, or a more complex neural network model [15], 

which support nonlinear and multivariate functions. 

The moving average model is a common approach to predict future points in univariate 

time series (time series forecasting) [14]. It assumes that the future values depend 

linearly on the current and past observed values. It is a quite simple model that can 

provide accurate outputs for many application cases. However, it only supports 

stationary time series, i.e. time series which the mean and variance do not change over 

time. In order to support non-stationary and other features, in the context of time series 

forecasting there exist more complex models such as the ARIMA (autoregressive 

integrated moving average) [14]. 

In predictive analytics, while time series forecasting focuses in the prediction of values 

of a single time series, the regression analysis [16] comprise an approach employed to 

predict the value of a dependent variable (not necessarily a time series) based on the 

values of one or more independent variables. In this sense, a moving average model can 

be viewed as a simple linear regression model. The process of regression analysis 

modelling encompasses the analysis of how the value of the dependent variable behaves 

when the values of the independent variables vary. Then the regression model, usually 

consisting in a mathematical function, is created to be able to estimate the expected 

average value of the dependent variable given the values of the independent variables. 

For example, a health insurance company can use a predictive model that take into 

consideration many independent variables, such as age, gender and medical records of 
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past and current clients in order to estimate the most probable costs of a new client, with 

an acceptable level of reliability, and based on that define the insurance price. 

In this context, machine learning [17] comprises another field that provides several 

approaches used for prediction that has an overlap with regression analysis. Usually 

machine learning techniques are used in cases where the relationship between input and 

output variables are very complex and its nature is unknown. In this context, these 

techniques emulate some human cognition aspects to learn the relationship between 

variables from training examples. 

There are several techniques and algorithms to perform the predictive analysis 

modelling. The linear regression is one of the simplest, but there are others like logistic 

regression, which as opposed to previous techniques that estimate numerical variables, 

focuses in the prediction of a categorical variable. Additionally, there are a set of 

machine learning algorithms with mix concepts, such as regression trees, or those that 

are only based on machine learning techniques, such as neural networks and support 

vector machines [17]. 

The main focus of such techniques and algorithms is to generalize the patterns found in 

past and historical data in a predictive model that can be used to estimate values or 

predict events given the input variables, even if the input values were not presented in 

the historical dataset. In order to build such models several tasks should be performed 

(see Figure 4). In the process of data mining the main tasks comprehend data preparation 

(pre-processing and cleaning data), modelling (split data in training and test sets, and 

apply the algorithms to build the predictive models), and evaluation (use the model in 

the test set and evaluate the output accuracy). In this context the accuracy and usability 

of outputs will depend on the quality and quantity of data available to build the model. 

Usually, the prediction outputs are not so accurate, however they are accurate enough 

to generate some trustful values to the application. 
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Figure 4 - Predictive Data Analysis Process Overview 

In many scenarios, particularly in dynamic environments, the variables can evolve over 

time, presenting continuous changes, characterizing the drift concept [18]. This imposes 

some challenges for data analysis techniques, which need to support evolving data 

streams, requiring some adaptive learning mechanisms for a continuous assessment and 

update of the predictive models as new data become available and current models 

become obsolete. For example, predictive models to forecast the weather conditions 

need to consider the different seasons. Other challenges that can be faced by such 

techniques encompass the need to deal with missing values (information 

incompleteness), as well as computational and response time constraints, which can 

directly affect the accuracy of predictive models as also the selection of the predictive 

model itself. 

3.3.2. Data Correlation 

Data correlation comprises the process of analysing the statistical relationship between 

two continuous variables or sets of data, i.e., measure how and how much they are 

dependent or linked together [19-20]. For instance, considering two variables if their 

values increase or decrease together it characterizes a positive correlation, on the other 

hand a negative correlation indicates that the value of one variable increase while the 

other decrease. In this sense, the correlation between two datasets is given by a 

coefficient that ranges from 1 (perfect positive correlation) to -1 (perfect negative 

correlation). A coefficient equals to 0 means that there is no correlation. 

The correlation analysis is widely exploited in practice since it can provide evidences 

that exist a behavioural pattern among two variables. For instance, if it is known that 

when the value of a variable increases, the value of the other variable also increases with 

a given rate, this can be used to understand the causes of an event or generalized in a 
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mathematical model that can be used to predict future values. In spite of that, the results 

of the correlation analysis need to be treated carefully, since it is easy and tempting to 

have early conclusions regarding that the changes in one variable is the cause of the 

changes in the other variable. However, correlation does not imply causation, i.e., in 

reality the appearance of a correlation does not mean that one thing causes the other, 

since there may be others unknown factors that influence the behaviour of the variables 

[21]. 

There are many techniques to compute the correlation coefficients. The Pearson 

correlation coefficient (also known as Pearson product-moment coefficient) [19-20] 

comprise the simpler and most common, which is only able to indicate that the 

relationship between two variables can be approximated by a linear function, i.e., the 

relationship follows a straight line. The Pearson correlation coefficient can be obtained 

by dividing the covariance of the two variables (i.e., how much they change together) 

by the product of their standard deviations (i.e., the variation or dispersion of their 

values). There are also others well-known techniques, based on rank correlation 

coefficients [19-20], such as Spearman rank correlation coefficients and Kendall rank 

correlation coefficients which don’t require that the variables present a linear 

relationship.  

As previously shown, correlation is a simple and suitable approach to identify and 

characterize the linear relationship between two variables. Multiple correlation can be 

computed by fixing a variable and using a linear function of the other variables. Another 

more specific type of correlation is the autocorrelation [14], which is mainly used in the 

field of signal processing where a signal is correlated with itself at different points in 

time in order to find periodic patterns. 

On the other hand, there are more sophisticated and robust approaches that can be used 

to identify other types of relationships, e.g., that follows a curve, or even more complex 

relationships, e.g., when the behaviour of one variable is correlated with the behaviour 

produced by the combination of other two or more variables. Most of this approaches 

are inside the context of data mining [12], where descriptive and predictive analytics 

provide several techniques and methods that help to identify and understand the 

different kinds of relationships or correlations that can be found among the datasets, as 

well as the causes of these relationships.  

In this context, regression analysis [16] is a well-known and widely used approach to 

understand and mathematically modelling the relationship between a dependent variable 

and a set of independent variables. Unlike correlation analysis, regression analysis can 

be used to infer and test causal relationships. In both descriptive and predictive analytics 

regression analysis can be used to understand the patterns and create models capable to 

describe and predict behaviours and events for different scenarios and applications 

(Figure 5). 
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Figure 5 - Data Correlation Application Overview 

3.4. Data Visualization Layer 

In the past, the different areas involved in the manufacturing process were extremely 

disconnected, with information such as schedules, job orders and inventory lists being 

written down and passed along the line in paper format. This could typically lead to several 

miscommunication issues, as well as making any change required due to a given issue in 

production an excruciating task, consequently resulting in inefficient and often 

unpredictable procedures. 

With the evolution of Information and Communications Technologies (ICT), along with the 

emergence of concepts like Cloud Computing, the Internet of Things and the Industry 4.0 

movement (see Figure 6) modern shop-floors are generating larger and larger volumes of 

data. Researchers estimate that every year about 1 Exabyte (1M Terabyte) of data is being 

generated worldwide, of which a considerably large portion is available in digital form. Due 

to this, the approaches based on paper forms became unsuitable to deal with such a scenario. 
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Figure 6 - Evolution of Industry 4.0 Related Technologies 

Furthermore, if data is simply presented textually, finding meaningful information that can 

provide a business advantage in millions of data entries becomes a task similar to finding a 

needle in a gigantic haystack. Consequently, without a proper way to interpret and explore 

these large volumes of data, most of them are deemed useless and databases are more likely 

to act as data ‘dumps’ instead [23]. 

To avoid this, and in order for proper data analysis to be effective, it is very important to 

integrate the human in the loop, combining his or her general knowledge and creativity with 

the processing and storage capacities of modern IT. Hence, the main goal of data 

visualization is to present data in such a way that a human can get insight into said data 

which would have been incomprehensible otherwise, drawing conclusions and directly 

interacting and acting upon the data. 

Bottom line is, data visualization enables or facilitates the comprehension of data, as well 

as the detection of patterns, trends and relationships contained in large complex data sets, 

being a largely important tool for data analysis when allied with a human’s perception and 

knowledge. 
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4. Technical Description and Implementation 

This section presents a possible implementation of each of the modular layers described in 

Section 3. Each of the chosen technologies is detailed along with an overview of their 

applicability in relation to the requirements already defined in the previous sections. However, 

due to the modular framework design, it is possible for any of these layers to be switched out 

for a different implementation, or even accommodate existing technologies (e.g. proprietary 

data acquisition systems) in a given shop-floor, thus being well aligned with PERFoRM’s aim 

to confer legacy systems with the additional intelligence and flexibility that Cyber-Physical 

Systems enable. 

4.1. Agent-based Data Acquisition Network 

4.1.1. The JADE Framework 

The Java Agent DEvelopment Framework (JADE) framework facilitates the 

implementation of agent-oriented approaches, serving as a MAS-oriented distributed 

middleware that provides a flexible domain-independent infrastructure. This 

infrastructure facilitates the development of complete agent-based applications by 

providing a run-time environment implementing the required basic features required by 

agents, their core logic and various auxiliary graphical tools [24]. JADE is written 

completely in Java, benefitting from the varied array of language features and third-

party libraries widely available. 

4.1.2. Component Monitoring Agent 

The Component Monitoring Agent (CMA) class acts as the core for both the data 

extraction and pre-processing tasks. To allow an easier comprehension of its 

implementation, a class diagram of the CMA’s associated data model is provided in 

Figure 7. 

 

Figure 7 - CMA's Class Diagram 
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As seen above the CMA class has two different interfaces associated, IDataCollection 

and IDataDescription. The former possesses three different methods which enable the 

establishment of communications between the agent and the hardware, namely 

initializeHWConnection and closeHWConnection, and also the ability to read a given 

value indicated by a certain id tag via the readHardwareValue method. The 

IDataDescription interface provides the method which allows the agent to learn from 

and external source which device and associated data fields it is responsible for 

monitoring. This is achieved through the getMonitoringDataDescription method. 

The CMA class also has four different behaviours implemented into its logic, supported 

by the following data fields: 

 circularBuffer is the main data buffer where the latest extracted values are 

stored. As previously mentioned in 3.4.2, each CMA/HLCMA contains its own 

circular buffer in order for it to be able to compute any required values, taking 

into account recently extracted data. It is implemented as an ArrayList of 

elements of the MonitoredSystemValue class, which can be seen in Figure 4.5. 

This class contains a series of attributes that fully describe the associated 

abstracted value. 

 

Figure 8 - MonitoredSystemValue Class Diagram 

 dataDescriptionLib is an instance of a IDataDescription’s implementation, 

required for the agent to learn which data values it should collect and process. 

Even though its implementation varies depending on the application, it should 

always provide the agent the method listed in Figure 7. 

 dataCollectionLib is an instance of a IDataCollection’s implementation. It 

enables the agent to communicate with the hardware in order to collect relevant 

data as learned in the process described in the previous bullet point. It should 

also always provide the agent the methods listed in Figure 7. 

 lastComputedValues functions similarly to the circularBuffer, however only 

recently computed values are stored in it. Its existence allows the agent to save 

precious processing time by making sure it is not propagating values that have 

already been processed through the system. This could happen due to how the 

processing behaviour is triggered, which will be explained in further detail in a 

following section. 

 monitoredEntity is a simple string containing the name of the component or 

subsystem being monitored (e.g. Gripper1, SafetyGroup2). 
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 myMonitoringDataDescription is an object containing the lists of 

MonitoredSystemValue elements that the CMA/HLCMA is expected to either 

collect or compute from extracted values. Both classes are detailed in Figure 9. 

 

Figure 9 - Monitoring Data Description Class Diagram 

 parent is a string that references as the name suggests the agent’s parent in 

the monitoring tree. 

4.1.2.1. Acquiring the Monitoring Data Description 

In order for a CMA to start collecting and processing data it is mandatory that the 

Monitoring Data Description (MDD) is loaded before-hand. For this purpose, during 

the CMA’s initialization an instance of the Event Description Library (EDL) is 

created, allowing the agent to call the getMonitoringDescription method which 

returns an object of the MonitoredSystemValue class. As described in Figure 9, this 

object contains two ArrayLists, pollingData and processedData, detailing which data 

the CMA needs to collect periodically and which values require computation on the 

agent’s side. Figure 10 shows the steps executed by the CMA during this task. 
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Figure 10 - Acquiring the Monitoring Data Description 

As it can be seen in Figure 10, by using the EDL the CMA is able to retrieve a list of all the 

data related to its monitored component from an external source. It is pre-established that the 

MDD must provide the source for each data event described, therefore by checking this 

parameter the CMA can determine if the value needs to be calculated or if it is extracted directly 

from an external source (in case the parameter refers to anything other than the agent itself), 

separating the aforementioned ArrayList into the two data fields that make up the MDD class, 

pollingData and processedData. 

4.1.2.2. Data Collection 

Data collection can happen in two different ways, either by having the agent 

periodically extracting data or by having this process triggered by the detection of a 

change in a given monitored data value. 
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In the first scenario, considering that this is a repetitive process, a TickerBehaviour 

was chosen for the implementation of the readHardwareValue behaviour. This 

behaviour is repeatedly executed at a fixed rate, defined during the agent’s 

deployment, as illustrated in Figure 11. During its initialization, the CMA iterates 

over the pollingData list contained within the myMonitoringDataDescription 

attribute, launching a readHardwareValue behaviour for each iterated element. 

 

Figure 11 - CMA Periodic Data Collection Implementation 

For the sake of enabling the agent-device interaction a communication interface is 

also required. For this purpose the Data Collection Library (DCL) provides three 

different methods, initializeHWConnection, closeHWConnection and 

readHardwareValue. The first two respectively establish and close the connection 

to the source device (this connection is maintained while the CMA is running), 

while the latter provides a means to extract a specific data value from it. 

In the second case, the extraction is triggered by the DCL itself. In situations where 

this is supported by the underlying technology, with the agent reference passed as 

an argument in the initializeHWConnection (see Figure 7), the DCL is able to 

launch behaviours in the associated CMA. As such, using a simple event listener, 
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upon detecting a change in a monitored data value the DCL can extract it and using 

the agent reference it can directly deploy the behaviours responsible for sending the 

extracted data up the monitoring tree.  

4.1.2.3. Data Pre-Processing 

The DataProcessingBehaviour detailed in Figure 12 is responsible for handling all 

the computations required to calculate new values from the extracted data. Since 

this behaviour is simply launched as a consequence of new data having been 

collected, ending after it finishes its task, a OneShotBehaviour was used for its 

implementation. 

The CMA starts off by iterating over the MDD ArrayList elements that describe 

which values it is expected to calculate. For each one of these it checks if the values 

stored in the circularBuffer at that given point in time meet all the associated sets of 

conditions, and if so it creates a new instance of the MonitoredSystemValue class to 

store the new computed data. Afterwards it stores the new data in the 

newProcessedValues ArrayList and moves on to test whether the remaining 

processedData elements can be calculated. 
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Figure 12 - Data Pre-Processing Behaviour Implementation 

As previously shown in Figure 9, the conditions that define MonitoredTimespan and 

MonitoredState objects were implemented resorting to a HashMap. In the former’s 

case two different HashMaps were used, startConditions and endConditions. Both 

use the correspondent state’s ID as the key, while the pair is the actual state’s value 

that satisfies the condition. For the latter only one set of conditions exist, more 

specifically the stateMapping, in which another HashMap is used as the key, and 
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the corresponding state designation is used as the value. A simplified example of a 

stateMapping for a gripper’s current state can be visualized in Table 1. 

Table 1 - Example of a gripper's stateMapping 

Hardware I/O Current State 

Open True 

Open 
Closed False 

Close_Signal False 

Open_Signal False 

Open False 

Closed 
Closed True 

Close_Signal False 

Open_Signal False 

Open False 

Opening 
Closed False 

Close_Signal False 

Open_Signal True 

Open False 

Closing 
Closed False 

Close_Signal True 

Open_Signal False 

 

After all possible values have been calculated and stored in the newProcessedValues 

list, for each element contained in it the CMA initiates a new CFP through the 

CloudOutputBehaviour in order to select a suitable OCA to export the new data to 

external entities. In similar fashion, for each CFP initiated a Request is also sent to 

the CMA’s parent through the SendDataInitiator behaviour. 

4.1.2.4. Transmitting Monitored Data 

The last task performed by the CMA is the transmission of both collected and 

processed data. This transmission occurs when either of the behaviours described in 

the previous two sections terminates its execution, and consists in two different 

behaviours responsible for sending said data to both the CMA’s parent HLCMA and 

an available OCA from the Output Cloud. 

The SendDataInitiator behaviour consists in a simple point-to-point communication 

between a CMA and its parent HLCMA. When the CMA finishes the execution of 

a readHardwareBehaviour or receives new data via the event listener in the DCL, 

it serializes the new data value and sends a request to its parent containing the 

serialized data. This can be seen in Figure 13. 
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Figure 13 - SendDataInitiator Behaviour 

The CloudOutputBehaviour, observed in Figure 14, differs mainly in the fact 

that whilst the communication between a CMA and its parent HLCMA is point-

to-point through and through, in this case the interaction starts out between the 

CMA and possibly many different OCAs. 

Firstly the CMA diffuses CFPs to the OCA cloud to find an available agent to 

process the data exportation. Upon receiving the proposals from possible OCAs, 

it evaluates them according to the established metric, in this case the response 

time, and selects only one to process its request, sending refusal messages to the 

rest. At this point the CMA serializes the fresh monitoring data and sends it in 

the Accept-Proposal message to the selected OCA, awaiting its response, 

finalizing the CMA’s role in the process. 
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Figure 14 - CloudOutputBehaviour Implementation 

4.1.3. Higher-Level Component Monitoring Agent 

The CMA and HLCMA classes are very similar from an implementation standpoint, 

being that the latter is simply an extension of the former. As such, the HLCMA displays 

all the behaviours and attributes previously described for the CMA, having just the 

added capacity to receive and process data computed by lower-level CMAs or HLCMA 

s. The data model representing this extension, along with the relationship between the 

CMA and HLCMA classes is presented in Figure 15. 
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Figure 15 - HLCMA's Data Model - Class Diagram 

As illustrated, the HLCMA class inherits the CMA’s data fields and its behaviours, 

presenting a similar functionality. Also, as indicated, a HLCMA can have multiple 

CMAs associated to it, however, each CMA can only have exactly one parent HLCMA, 

or none. 

The point where the CMA and HLCMA differ is in the existence of the 

NewDataResponder behaviour, which will be described later. Being a higher-level 

entity, the HLCMA can only gather data from the subsystem it abstracts but also from 

the agents in the lower layers of the monitoring tree. 

4.1.3.1. Receiving Pre-Processed Data 

The NewDataResponder behaviour is based on JADE’s AchieveREResponder class, 

allowing the HLCMA to process a CMA/ HLCMA’s Request message containing 

data processed at a lower-level of the monitoring tree. This behaviour is detailed in 

Figure 16. 
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Figure 16 - NewDataResponder Behaviour 

As seen in Figure 16, after receiving a Request message from an associated lower-

level CMA/ HLCMA, the parent HLCMA deserializes its content in order to obtain 

the newly processed data, storing it in its local circularBuffer, initiating the 

DataProcessingBehaviour afterwards. 

4.1.4. Output Coordinator Agent 

The OCA acts as the gateway that allows data to flow from the monitoring architecture 

to external entities, relaying that information through the use of a Data Output Interface 

(DOI). This agent can existing as a singleton entity, or as a cloud of distributed OCAs 

in order to avoid a single point of failure in the output communications. The class 
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diagram depicting the data model for both the OCA and the DOI can be observed in 

Figure 17. 

 

Figure 17 - OCA's Data Model - Class Diagram 

Any implementation of the interface must provide a sendOutput method that allows the 

OCA to send objects of the MonitoredSystemValue class to relevant external entities 

such as a remote historical DB or a large processing network. 

4.1.4.1. Exporting Data 

The OCA’s behavioural logic comprises two different behaviours, the first of which 

is the IncomingDataResponder, described in Figure 18. Having been implemented 

based on a ContractNetResponder behaviour, it gives the agent the capability of 

handling negotiation requests (in the form of a CFP, as later described in Figure 21) 

from a CMA/HLCMA, replying with proposals and handling their response. 
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Figure 18 - OCA's IncomingDataResponder 

Upon receiving an Accept-Proposal message, the OCA’s IncomingDataResponder 

launches the SendOutputBehaviour, an extension of the OneShotBehaviour class, 

which in turn calls the DOI’s corresponding method, sendOutput, which interfaces 

with the external entities in order to relay the monitored data to them. Since the DOI 

is a generic interface, the agent isn’t concerned with neither its implementation nor 
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the type of external entity it interfaces with, meaning that the agent’s logic is 

unchanged regardless of the technology used in the other end. 

4.1.5. Agents Communication  

Since all JADE agents are FIPA compliant [25], the communications established 

between were implemented according to the specifications of two different FIPA 

protocols, FIPA Request and FIPA Contract Net. Both protocols are analysed in the sub-

sections ahead. 

4.1.5.1. FIPA Request Protocol  

The FIPA Request Protocol [26] allows agents to perform point-to-point 

communications, being therefore able to request another agent to perform a certain 

action. As illustrated in Figure 19, this protocol specifies that the communication 

starts when the Initiator agent sends a request to the Participant agent. 

 

Figure 19 - FIPA Request Protocol 

Upon receiving a request, the Participant can either accept it, sending an agree as a 

reply, or refuse it sending a refuse message back. After it finishes performing the 

requested action, in case it was completed successfully the Participant sends an 

inform message to the Initiator instructing it of its completion. Otherwise it sends a 

failure message. 
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4.1.5.2. FIPA Contract Net Protocol  

The Contract Net Protocol (FIPA, 2000) promotes a negotiation between an Initiator 

and several Participant agents, allowing the former to evaluate which Participant 

agent or agents are more suitable to perform a certain task. 

As it can be seen in Figure 20, the protocol dictates that communication starts with 

an Initiator sending a call for proposals to m Participant agents, where m is the given 

number of agents, which can in turn refuse the communication if for some reason it 

cannot perform the requested task, or reply with a proposal otherwise. After the 

Initiator has received all the responses, regardless of them being refusals or actual 

proposals, it can start evaluating them. 

 

Figure 20 - FIPA Contract Net Protocol 

For each proposal that the Initiator accepts it will send an accept-proposal message 

to the associated Participant, who starts processing the requested task. Upon the 

completion of the requested task, each Participant replies with an inform message 

indicating success, or ultimately if the task was unsuccessful a failure message is 

sent instead. 

Proposals that do not pass the evaluation process also receive a reply, in this case a 

reject-proposal message is sent to the associated Participants, terminating the 

interaction between them. 
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4.1.5.3. Agents’ Interactions  

These interactions are summarized in Table 2, where each row corresponds to a 

different communication initiator (INIT) and each column represents the different 

responders (RESP). 

Table 2 - Summary of the Agent Interaction 

            RESP  

 

INIT   
CMA HLCMA OCA 

CMA  FIPA Request FIPA Contract Net 

HLCMA  FIPA Request FIPA Contract Net 

OCA    

 

As suggested by [27], in a distributed scenario the use of JADE’s standard message 

transfer protocol conjugated with potential network delays takes its toll in the 

system’s performance as a whole. For this reason the interactions between the 

agents that constitute the monitoring infrastructure were kept to a bare minimum to 

improve the system’s overall performance.  

A more complete view of the entire process can be seen in the sequence diagram 

depicted in Figure 21, which showcases the data flow from the collection at the 

machinery level up until it is transported to the higher-level layers via the OCA. 

 

Figure 21 - Monitoring Agents' Interactions 
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4.2. Data Message Queue Layer  

4.2.1. Apache Kafka  

Any implementation of the DQL needs to take into consideration the requirements 

specified in Subsection 3.2 (fundamental architectural principles and the requirements 

for the DQL, respectively), more specifically in terms of scalability, capacity to handle 

high volumes of data, low latency and reliability. With this in mind, Apache Kafka [28, 

29] is proposed as a possible framework to implement such a data queue.  

Kafka is a fault-tolerant, highly scalable, distributed messaging system. In essence, it 

functions with a publish-subscribe approach, allowing producers (data sources, in this 

case the agents in the DAL) to publish data messages which are maintained in categories 

called topics, as observed in Figure 22.  

 

Figure 22 - Apache Kafka Overview 

These can be subscribed by consumers (represented by the DPL nodes), being divided 

into ordered partitions supporting message persistence and replication. Kafka’s message 

management is optimized for low latency and high throughput, with documented uses 

for even real-time applications [30]. 

Thus, for the purpose of this implementation, Apache Kafka acts as the link between the 

MAS and Storm’s entry point (the spout element, detailed in Section 4.3), as illustrated 

in Figure 23. 

 

Figure 23 - Kafka's Implementation as an integration layer 
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4.3. Data Analysis Layer  

4.3.1. Apache Storm  

Finally, for the DPL Apache Storm is considered, being a distributed stream processing 

system which easily integrates with both databases and queuing technologies (such as 

the aforementioned Apache Kafka).  

Storm is a distributed real-time computation system, working somewhat similarly to 

how Hadoop provides a set of general primitives for doing batch processing, it provides 

a set of general primitives for doing real-time processing. 

Storm’s processing runs in topologies, which wire data through a series of nodes in a 

directed acyclic graph (DAG), each containing certain processing logic, with the 

associated links specifying the data flow. An overview of this behaviour can be seen in 

Figure 24. 

 

Figure 24 - Apache Storm Overview 

Furthermore, Apache Storm is an extremely versatile tool, supporting the development 

of spouts and bolts in several other languages other than Java, through the inclusion of 

a “Multi-Language” (or “Multilang”) protocol. As such, bolts with complex data 

analysis functionality that would be extremely difficult and elaborate to write in Java 

can be written for instance in R, being later on easily integrated into the topology like a 

“regular” bolt. 

Taking this characteristics into account, and focusing on the PERFoRM requirements 

and goals, a possible topology was implemented to tackle the project’s particular needs 

in terms of real-time data analytics. This topology is represented in Figure 25. 
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Figure 25 - Real-time Data Forecasting Topology Overview 

Each of the individual components comprised in the proposed Storm topology will be 

approached in further detail in the coming subsections. 

4.3.1.1. ComponentSimulationSpout  

The ComponentSimulationSpout (CSS) was implemented to serve as a data source 

to be used for testing the Storm Real-time analysis topology. 

In essence it has three main operation modes, which are: 

 Regular operation: Normal behaviour simply consists in a random integer 

between a given minimum and maximum value being generated and emitted 

at a specific data rate, simulating the acquisition of simple data from a 

component under normal conditions. 

 Spike Failure: This mode of operation simulates an equipment failure which 

causes a sudden spike in the absolute value of the extracted data (maintaining 

an increased value thereafter), allowing for instance to test the topology’s 

behaviour when data suddenly spikes above the threshold boundaries defined 

as regular operation conditions.   

 Incremental Failure: Contrastingly, this mode prompts the absolute value of 

the simulated data to be increased steadily over a given period of time, enabling 

the testing of trend detection and prediction of future values based on said 

trend. 

With these three modes of operation, different situations can be simulated in order 

to test the topology’s performance under a controlled setting. However, once the 

topology is required to be applied in a production environment, this spout can be 

simply replaced by a Kafka spout which consumes data from a Kafka topic, or a 

different kind as deemed necessary based on the associated technologies. 
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4.3.1.2. FilterBolt  

As the source spout (regardless of it being the aforementioned simulation spout, or 

a production ready one) propagates the source data downstream (see Figure 25), a 

bolt responsible for filtering component specific data is necessary. This functionality 

can be seen in Figure 26. 

 

Figure 26 - FilterBolt Functionality 

Simply put, the data coming from the source spout is checked to see whether or not 

it pertains to the associated component. If it is, the bolt propagates it further 

downstream, otherwise it is ignored so that the appropriate sub-topology can process 

it instead.  

4.3.1.3. RollingAverageBolt  

A simple rolling average (also referred to as simple moving average, or SMA), is an 

unweighted mean of the last n values of a given data set, as dictated in the formula 

below:  

𝑆𝑀𝐴 =  
∑ 𝑉𝑖 𝑛

𝑖=1

𝑛
 

The calculation of a rolling average serves to smooth the data, aiding in the detection 

of emerging trends and patterns that could be otherwise hard to observe. Being based 

on the x most recent values, it can provide a more realistic basis for forecasting 

future values and take corrective action as needed. 

The RollingAverageBolt (RAB) employs such a formula, storing incoming raw 

values in a sliding window with a fixed size, emitting the SMA value on each 

iteration (every time new data arrives), as illustrated in Figure 27.   
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Figure 27 - RollingAverageBolt Functionality 

The RAB was implemented by extending the functionality of a BaseWindowedBolt, 

essentially maintaining a window of a fixed sized passed as an argument upon 

initializing the topology, along with a window update rate (e.g. every new value). 

As such, new data tuples are added to a sum value and kept there for the duration of 

the window, being removed (subtracted from the sum) upon expiration. On each 

iteration, the sum is divided by the window length and the resulting SMA value is 

propagated downstream.  

4.3.1.4. ForecastBolt  

The implemented ForecastBolt (FCB) estimates an ordinary least squares regression 

model with a single independent variable based on the formula below, where m and 

b represent the slope and the intercept, respectively. 

𝑦 = 𝑚𝑥 + 𝑏 

Observations (x,y pairs) can be added one at the time to the model as they are 

received by the node in order to update it to enable forecasting future y values for a 

given x. These observations are not stored in memory, so theoretically there is no 

limit to the number of observations that can be added to the model itself. 

4.3.1.5. AlarmBolt  

The AlarmBolt (AB) is responsible for processing the incoming forecasts produced 

by the FCB in order to ascertain which values surpass a given threshold, triggering 

an alarm response. An overview of the bolt’s behaviour is provided in Figure 28. 

 

Figure 28 - AlarmBolt Functionality 
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Additionally, the possible existence of false positives is also considered. As seen in 

Figure 28, which depicts a case where a forecast above the alarm threshold has been 

detected, each AB evaluates the incoming forecast values according to a given set 

of rules, triggering an alarm response only when these rules are met, whilst ignoring 

singleton irregularities in the data, thus acting as a slightly more complex FilterBolt. 

These alarm responses can in turn be used as triggers for reconfiguration 

mechanisms, predictive maintenance or other such behaviours. 

4.4. Data Visualization Layer  

The data visualization was implemented as a Java application which updates each chart as 

new data arrives in near real-time. This makes it easier to visually understand and interpret 

the data being outputted by the processing network, allowing it to be used for instance at 

the shop-floor level as a Human-Machine Interface (HMI) to support operators in run-time. 

An overview of the data visualization application can be seen in Figure 29.   

 

 

Figure 29 - Data Visualization 

As depicted, the application allows the user to navigate to each of the monitored Key 

Performance Indicators (KPI), displaying relevant information such averages and forecast data 

in near real-time.  

Furthermore, Figure 29 showcases the incremental failure scenario described in Subsection 

4.3.1.1, where the grey plot represents the observed raw data which steadily escalates, the 

yellow values provide the smoothed data calculated by the rolling average and finally the 

forecast for 500 values into the future, along with the pre-defined alarm threshold which acts 

as a boundary for normal operation conditions.  
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5. Preliminary Tests  

As indicated in Subsection 4.3.1.1, a simulation spout was implemented in order to emulate the 

behaviour of a shop-floor component. In essence, the ComponentSimulationSpout is configured 

according to the following settings: 

 Data Rate: As the name suggests, specifies the intervals at which a new observation 

(x,y pairs) is generated. 

 Data Range: Indicates the minimum and maximum values between which the new data 

point is generated. 

 Forecast: The forecast parameter defines the number of x entries into the future for 

which the corresponding y pair value should be forecast. 

 Failure: Acts as a control variable in order to define the spout’s operation mode, being 

either normal or failure. 

 Failure Type: If failure mode is enabled, this parameter defines the type of failure to be 

simulated, more specifically spike or incremental. 

 Failure Duration: Lastly, the Failure Duration indicates how long the failure condition 

will last. 

The tests documented in this section consisted in running the topology in the three different 

modes, namely normal operation conditions, simulated spike failure and incremental failure. 

Using the data visualization component described in Subsection 4.4, the behaviour illustrated 

in Figure 30 was obtained for normal operation conditions. 

 

Figure 30 - Simulation Scenario - Normal Conditions 
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For these tests, the settings were defined as shown in Table 3: 

Table 3 - Simulation Settings 

Data Rate 100 (ms) 

Data Range [100 , 200] (ms) 

Forecast 500 

Failure TRUE/FALSE 

Failure Type  SPIKE/INCREMENTAL 

Failure Start Delay 600 * Data Rate = 60000 (ms) 

Failure End Delay 1200 * Data Rate = 120000 (ms) 

 

As seen in Figure 30, three different data types are charted. The dark grey line represents the 

raw values coming directly from the source spout, with the values ranging from 100 to 200 

milliseconds as specified in the ComponentSimulationSpout settings (see Table 3). The rolling 

average can be seen in yellow, representing and smoothed dataset, eliminating outliers and 

preparing the incoming data points to be processed. Finally the forecast is shown in blue, 

depicting the predicted value of the y variable 500 data point entries into the future. 

Upon inducing a spike failure, the corresponding reaction can be seen in Figure 31. 

 

Figure 31 - Simulation Scenario - Spike Failure 

As it can be observed, after the time specified in the Failure Start Delay parameter has elapsed 

(600*100ms = 60000ms = 60s) a spike increase in the raw data values is detected, causing the 

rolling average values to suddenly increase as well.  
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This in turn causes the forecast values to skyrocket due to the way the least squares model is 

estimated. Clearly this is not an ideal application scenario since there was no trend in the data 

that would allow the failure to be predicted. Still, this occurrence can be detected due to the 

forecast exceeding the alarm threshold, causing an alarm event to be emitted, triggering a 

possible self-adjustment or maintenance response. 

A better suited scenario would be the case where there is an underlying trend in the data being 

analysed which can be used to anticipate such a failure or machine breakdown event. In order 

to test this, the incremental failure mode was implemented, as it can be seen in Figure 32.    

 

Figure 32 - Simulation Scenario – Incremental Failure 

In this case, instead of a sudden spike in the raw data values generated by the 

ComponentSimulationSpout, a gradual increase in the observed value can be detected, thus 

presenting a rising trend in the data. With this, the ForecastBolt can anticipate this behaviour 

and allow an intervention before things get too out of hand. This bolt can also be adjusted and 

further refined, both in terms of varying its configuration parameters or even the algorithm 

itself, allowing for predictions to be either faster or slower to respond to the changes in the raw 

data values, controlling issues such as false positives or late detections.        
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6. Conclusion  

This document entailed the description of both the architectural design as well as a technical 

implementation of a real-time data analysis framework developed under the H2020 PERFoRM 

project, capable of extracting raw real-time data and compute it in order to translate said data 

into a business advantage for manufacturers. This tackles one of the main challenges being 

faced nowadays in the industry concerning the large amount of data being generated but 

unutilized, and is well aligned with the Industry 4.0 vision of factory interconnectivity and the 

big data concept. 

To this end, the document starts by proposing a layered architecture, decomposing the overall 

complexity of this multidisciplinary challenge into several different levels, each with its own 

characteristics, requirements and goals, namely: 

 The Data Acquisition Layer, which is responsible for extracting raw data from the shop-

floor and needs to be able to cope with possible real-time constraints, different 

communication protocols, scalability and pluggability concerns. 

 The Data Queue Layer, charged with the integration of the data acquisition and 

processing modules, and required to support high throughput and reliability. 

 The Data Processing Layer, responsible for detecting trends and correlations in the data, 

as well forecasting future values, all the while contemplating the issues of performance 

and scalability.  

 The Data Visualization Layer, which facilitates the interpretation and understanding of 

the data, enabling the integration of the human in the process. 

Additionally, a possible implementation of each of the proposed architecture’s layers was 

presented, contemplating several different technologies and the applicability of each of them 

regarding the requirements imposed by each of the different modules. This implementation was 

subjected to some preliminary testing under a simulated environment, in which promising 

results were shown in terms of the early detection and prevention of possible machine failures 

or breakdowns in different situations, serving as an input to trigger self-adjustment mechanism, 

thus successfully supporting PERFoRM’s aims for seamless reconfigurability and visualization 

of manufacturing processes. 
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