

Production harmonizEd Reconfiguration

of Flexible Robots and Machinery

Horizon 2020 – Factories of the Future, Project ID: 680435

Deliverable 3.2

Real-time Process Information Exploitation

Lead Author: UNINOVA

Version: 1.0

Date: 26.10.2016

Status: Final

Dissemination level: PUBLIC

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 2/48

Version Date Content

0.1 20.06.2016 Table of Contents

0.2 04.10.2016 Draft document including the contributions of

the different partners involved in the task.

0.3 17.10.2016 Conclusion of incomplete sections (Abstract,

Sections 1.2, 3.4, 6), addition of Section 5 –

Tests and Validation, and refining based on the

feedback received from the various involved

partners. Revision of Acronyms and References.

1.0 26.10.2016 Final proof reading.

Author List:

André Rocha (UNINOVA)

Danielle Sandler (UNINOVA)

Jonas Queiroz (IPB)

José Barbosa (IPB)

Ricardo Peres (UNINOVA)

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 3/48

Abstract

The recent advances in Information and Communications Technology (ICT) brought forward

several new concepts such as Cloud Computing, the Industrial Internet of Things, Big Data and

Cyber-Physical Systems, allowing for more agile, flexible, highly-scalable, distributed and thus

far more complex systems and solutions to be developed, causing a profound change in various

applications domains.

In modern manufacturing, higher and higher volumes of data are thus being constantly

generated by the manufacturing processes and systems adopting these new paradigms and

technologies. However, only a small percentage is actually used in a meaningful way,

originating the data “dump” phenomenon due to data volumes and rates becoming

unmanageable.

Aligned with PERFoRM’s Industry 4.0 vision, this documents details a modular framework for

the implementation of a highly flexible, pluggable and distributed data acquisition and analysis

system supported by the results of previous successful European projects, which can be used

for both assisting in run-time decision making and triggering self-adjustment methods, allowing

corrections to be made before failures actually occur, therefore reducing the impact of such

events in production. Additionally, a possible implementation is thoroughly described, along

with a few preliminary results from tests conducted under simulated conditions.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 4/48

Table of Contents
I. Acronyms .. 7

1. Introduction ... 8

1.1. Objective of the Document .. 8

1.2. Structure of the Document .. 8

2. Real-time Data Acquisition, Processing and Visualization Approach .. 9

2.1. Architecture Specification ... 10

3. Architectural Elements .. 12

3.1. Data Acquisition Layer ... 12

3.2. Data Queue Layer .. 13

3.3. Data Processing Layer ... 13

3.3.1. Generation of Predictive Data ... 13

3.3.2. Data Correlation .. 16

3.4. Data Visualization Layer ... 18

4. Technical Description and Implementation ... 20

4.1. Agent-based Data Acquisition Network .. 20

4.1.1. The JADE Framework ... 20

4.1.2. Component Monitoring Agent .. 20

4.1.2.1. Acquiring the Monitoring Data Description .. 22

4.1.2.2. Data Collection .. 23

4.1.2.3. Data Pre-Processing .. 25

4.1.2.4. Transmitting Monitored Data .. 27

4.1.3. Higher-Level Component Monitoring Agent .. 29

4.1.3.1. Receiving Pre-Processed Data ... 30

4.1.4. Output Coordinator Agent ... 31

4.1.4.1. Exporting Data .. 32

4.1.5. Agents Communication ... 34

4.1.5.1. FIPA Request Protocol .. 34

4.1.5.2. FIPA Contract Net Protocol .. 35

4.1.5.3. Agents’ Interactions .. 36

4.2. Data Message Queue Layer ... 37

4.2.1. Apache Kafka .. 37

4.3. Data Analysis Layer .. 38

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 5/48

4.3.1. Apache Storm .. 38

4.3.1.1. ComponentSimulationSpout.. 39

4.3.1.2. FilterBolt ... 40

4.3.1.3. RollingAverageBolt ... 40

4.3.1.4. ForecastBolt ... 41

4.3.1.5. AlarmBolt .. 41

4.4. Data Visualization Layer ... 42

5. Preliminary Tests ... 43

6. Conclusion ... 46

References ... 47

List of Figures

Figure 1 - Task 3.2 Layered Approach Overview ... 9

Figure 2 - Architecture Stack Overview .. 10

Figure 3 - DAL Multiagent System Overview .. 12

Figure 4 - Predictive Data Analysis Process Overview ... 16

Figure 5 - Data Correlation Application Overview ... 18

Figure 6 - Evolution of Industry 4.0 Related Technologies .. 19

Figure 7 - CMA's Class Diagram .. 20

Figure 8 - MonitoredSystemValue Class Diagram ... 21

Figure 9 - Monitoring Data Description Class Diagram ... 22

Figure 10 - Acquiring the Monitoring Data Description ... 23

Figure 11 - CMA Periodic Data Collection Implementation .. 24

Figure 12 - Data Pre-Processing Behaviour Implementation .. 26

Figure 13 - SendDataInitiator Behaviour .. 28

Figure 14 - CloudOutputBehaviour Implementation .. 29

Figure 15 - HLCMA's Data Model - Class Diagram ... 30

Figure 16 - NewDataResponder Behaviour .. 31

Figure 17 - OCA's Data Model - Class Diagram ... 32

Figure 18 - OCA's IncomingDataResponder ... 33

Figure 19 - FIPA Request Protocol ... 34

Figure 20 - FIPA Contract Net Protocol ... 35

Figure 21 - Monitoring Agents' Interactions ... 36

Figure 22 - Apache Kafka Overview... 37

Figure 23 - Kafka's Implementation as an integration layer .. 37

Figure 24 - Apache Storm Overview... 38

Figure 25 - Real-time Data Forecasting Topology Overview ... 39

Figure 26 - FilterBolt Functionality .. 40

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 6/48

Figure 27 - RollingAverageBolt Functionality .. 41

Figure 28 - AlarmBolt Functionality ... 41

Figure 29 - Data Visualization .. 42

Figure 30 - Simulation Scenario - Normal Conditions .. 43

Figure 31 - Simulation Scenario - Spike Failure ... 44

Figure 32 - Simulation Scenario – Incremental Failure .. 45

List of Tables

Table 1 - Example of a gripper's stateMapping ... 27

Table 2 - Summary of the Agent Interaction ... 36

Table 3 - Simulation Settings .. 44

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 7/48

I. Acronyms

Abbreviation Explanation

AB Alarm Bolt

CMA Component Monitoring Agent

CSS Component Simulation Spout

CPS Cyber-Physical System

DAL Data Acquisition Layer

DCL Data Collection Library

DOI Data Output Library

DPL Data Processing Layer

DQL Data Queue Layer

DVL Data Visualization Layer

DAG Directed Acyclic Graph

EDL Event Description Library

FCB ForeCast Bolt

FIPA Foundation for Intelligent Physical Agents

HLCMA Higher-Level Component Monitoring Agent

HMI Human-Machine Interface

ICT Information and Communication Technologies

IT Information Technologies

JADE Java Agent DEvelopment Framework

KPI Key Performance Indicator

MDD Monitoring Data Description

MAS MultiAgent System

OCA Output Coordinator Agent

PRIME Plug and pRoduce Intelligent Multi-agent Environment

PERFoRM Production harmonizEd Reconfiguration of Flexible Robots and

Machinery

RAB Rolling Average Bolt

SMA Simple Moving Average

WP Work Package

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 8/48

1. Introduction

1.1. Objective of the Document

This deliverable contains the outcome of Task 3.2, entitled “Real-time Process

Information”, which encompasses the development of the means to perform real-time data

acquisition and information extraction, the generation of predictive data to assist in run-

time decision making, as well as the detection and computation of trends, correlations and

forecasts to predict future production parameters and trigger self-adjustment and correction

methods.

For this purpose the principles advocated by the Industry 4.0 movement were used as

guidelines during the development of the task, ensuring the solution is capable of being

integrated into a smart production environment, supporting changeable conditions at the

shop-floor level including the plugging and unplugging of components during run-time,

possible reconfigurations and unexpected disturbances. Additionally, this task considers the

requirements imposed in WP1, WP2.2, WP2.4, WP7.1, WP8.1, WP9.1 and WP10.1 [1-7].

In line with the overall PERFoRM vision, results from previous successful R&D projects

in the field manufacturing data acquisition and processing, as well as ambience intelligence

were also taken into account, more concretely FP7 PRIME, IN-LIFE and the Self-Learning

projects were used as a basis for the work documented hereafter.

1.2. Structure of the Document

The document is divided into six main sections. Excluding the introduction and beginning

with Section 2, the overall approach is presented as a multidisciplinary solution,

encompassing data acquisition, data pre-processing or preparation, data processing and

visualization in its layered architecture. Afterwards, Section 3 describes each of these layers

in further detail, more specifically in terms of purpose, the associated requirements, core

functionalities and interactions of each one. Section 4 showcases a possible implementation

based on the proposed framework, describing the applicability and technical aspects

regarding each of the layers encompassed in Section 2. Furthermore, Section 5 presents

some tests conducted in a simulated environment, illustrating the implementation’s

behaviour in normal operation and under two different simulated failure settings. Finally,

Section 6 summarizes some conclusions regarding the developments regarded in the

document.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 9/48

2. Real-time Data Acquisition, Processing and Visualization Approach

Being a critical part of the PERFoRM ecosystem, the proposed solution is responsible for not

only performing the context-aware data analysis, thus generating predictive data that can be

used to trigger the system's self-adjustment mechanisms (e.g. reconfiguration), but also for the

acquisition of the data itself at both the manufacturing cell and component levels.

Additionally, a given number of requirements are imposed on the architecture's design. First

and foremost, in line with PERFoRM's vision the architecture should be generic enough to be

applicable to various different scenarios, being open so as to not depend on the existence of a

single communication protocol or standard on the shop floor, thus facilitating its industrial

integration and adoption. Moreover, it needs to be capable of adapting to changes to the process

or its components in run-time, for instance in terms of both pluggability and changes to the Key

Performance Indicators (KPI) to be analysed. Furthermore, data and context representation

should follow PERFoRM's common data model in order to enable the seamless interoperability

and data exchange between the data analysis architecture and the remaining PERFoRM system

elements and tools.

Another point to take into account is the aspect of scalability. In order to ensure that the

approach is applicable to a varied number of different use cases, it needs to be capable of scaling

according to each use case requirements. However, as a system scales its complexity tends to

increase to higher levels as a consequence. Thus, in order to tackle this challenge, a layered

architectural structure is proposed. An overview of this approach can be seen in Figure 1.

Figure 1 - Task 3.2 Layered Approach Overview

As depicted, the proposed architecture is divided into several layers in order to decrease the

overall complexity, each operating according to a specific purpose on top of the shop floor,

which stands as the base layer. Subsection 2.1 will approach the specification of the

aforementioned proposed architecture.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 10/48

2.1. Architecture Specification

As previously mentioned, the architecture consists in a series of stacked layers, dividing the

different tasks that are encompassed in the processes of data acquisition and analysis among

them in order to decrease overall complexity and achieve a higher degree of scalability and

adaptability. This is made possible also due to the modular and generic nature of each of

the architectural elements, which can operate independently from the technology used in

the remaining intervenient, so long as the communications specifications imposed by the

generic interfaces that connect them are respected. An overview is provided in Figure 2. In

which the grey layers in between each element represent these generic communication

interfaces.

Figure 2 - Architecture Stack Overview

As it can be seen in Figure 2, data flows solely from the bottom to the top layer, meaning

that the data flow consists in raw data being collected and pre-processed by the Data

Acquisition Layer (DAL), being buffered in the Data Queue Layer (DQL), which in turn

prepares it to be consumed by the Data Processing Layer (DPL), which can compute trends,

forecasts and correlations to be observed in the Data Visualization Layer (DVL), as well as

triggering appropriate corrective actions.

The architecture is thus guided by the main principle that as long as each of the encompassed

modules provides its designated services, exposing them through the generic interfaces and

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 11/48

respecting the requirements for scalability, robustness, pluggability and flexibility, there

should be no dependencies in terms of underlying technology stacks or communication

protocols.

As such, some functionalities should be present in any implementation of the proposed

architecture, namely:

 The capacity for handling the plugging and unplugging of components during run-

time, acquisition and pre-processing of raw data, which should be handled by the

DAL.

 The integration between the DAL and DPL, supporting high throughput of data,

handled by the DQL.

 The analysis of incoming (possibly high-volume) streams of data, along with the

generation of predictive data, computation of trends, forecasts and correlations, for

which the DPL is responsible.

 Finally, the capacity to display near real-time graphic representations of the

different steps involved at the various stages, providing a means to better

understand and interpret the data as well as to support run-time operations, should

be associated to the DVL.

Each of these layers is described in further detail in the Section 3.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 12/48

3. Architectural Elements

3.1. Data Acquisition Layer

Standing directly above the shop floor layer, the DAL is responsible not only for the

acquisition of relevant data but also by its pre-processing in terms of the extraction of

context-aware information. In regards to the data acquisition, the DAL needs to be flexible

in order to adapt to changes coming directly from its sources in the shop floor, be it in terms

of new components being plugged or unplugged, or even changes to the KPIs that need to

be collected and analysed. Also, the communication with the shop floor needs to be

specified in a generic way, thus allowing the consideration of different requirements from

different potential use case. For instance, a specific case might present time constraints in

the order of weeks or days, while a different one might require data to be collected and

analysed in near real-time, therefore requiring different approaches. To this end, the DAL

follows an approach similar to that presented in another successful European project, FP7

PRIME [8-10], in which a Cyber-Physical System (CPS) based approach was used. This

approach is centred on a Multiagent System (MAS) architecture which abstracts both

components and subsystems (e.g. cells, workstations) alike, as showcased in Figure 3.

Figure 3 - DAL Multiagent System Overview

The adoption of MAS paradigm confers additional flexibility and robustness to the DAL,

allowing it to quickly adapt to changes in the shopfloor. No less important is the existence

of generic communication interfaces which allow the agents to interact with the

environment in a ”black-box” fashion, regardless of the underlying technology or

communication standard. In PERFoRM’s case, this means that the approach can be

implemented in a way that the agents can communicate with the hardware via the

harmonization middleware, or if required (e.g. specific time constraints), a different

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 13/48

instantiation of these interfaces would allow an approach closer to edge computing. Upon

collecting the raw data, the agents can pre-process it in order to extract more meaningful

information before passing it on to the upper layers, in this case the Data Queue Layer

(DQL), which is described in further detail in Subsection 2.2.

3.2. Data Queue Layer

The DQL’s main purpose is to serve as a distributed continuous buffer for the data coming

from the DAL. It should add another layer of robustness, allowing for high-volume streams

of data to be transported from the DAL in order to be consumed by the data analysis

network. As such, it should provide reliability in terms of message delivery, which can be

achieved through the sequencing and replication of data messages. More than a simple

message queue, the DQL should be capable of not only handling a high throughput of data

(in order for it to cope with the aforementioned varied time constraints), but also to enrich

and filter or aggregate the buffered data as required in order to facilitate its consumption by

the Data Processing Layer (DPL).

3.3. Data Processing Layer

The last core layer is the DPL, responsible for the actual data analysis of the inputs coming

from the lower layers. In the context of PERFoRM, this analysis is meant to generate

predictive data related to the KPIs relevant for each use case, producing forecasts and

identifying trends and correlations between these indicators. As such, this layer enables the

early detection of possible disturbances, degradation or KPI deviation from the expected

boundaries in the shop floor. Hence, due to this capacity for predictive analysis, the DPL is

a key-enabler of condition-based maintenance, allowing manufacturers to schedule

maintenance operations before a failure actually occurs, thus diminishing the direct impact

on production. Additionally, the DPL is not limited to assisting in run-time decision making

(e.g. by interfacing with external data visualization tools, which are however outside the

scope of this work), being also capable of triggering self-adjustment methods (e.g. self-

reconfiguration) which can promptly perform corrections in order to return the system to a

state of normal operation.

3.3.1. Generation of Predictive Data

The generation of predictive data comprises the application of mathematical models

(such as those based on statistical techniques) to estimate future values or “guess”

unknown events. The development of such models is supported and researched by the

field of predictive data analysis [11], which encompasses a class of Data Mining [12-

13], also known as predictive analytics or regression analysis. Predictive data analysis

is applied to many fields, such as meteorology, financial markets, customer relationship

management and others [10]. In this context, it is used to produce an output that can be

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 14/48

directly employed, for example, to control a variable or the whole system, or indirectly

to drive and support a decision-making. Recently with the advances in sensor and data

acquisition technologies, as well as advanced data analysis frameworks and techniques,

more and more organizations and companies have integrated predictive analytics along

all their operations and decision-making processes [22]. For instance, at the business

levels, it can be used for planning tasks (expenditures, inventory and resource allocation,

according with time and investment impacts), management tasks (failures in assets,

improve employee allocation and productivity, reduce operational and maintenance

costs, drive development and distribution phases. While at the operational level, it can

be used for monitoring tasks (identify and diagnose leaks, critical issues and abnormal

patterns), and for controlling (take action in real time to prevent fault, reduce handling

time, alert operators of problems). The use of predictive analytics allows companies to

better extract the value of their data and use it to improve and optimize their operations

and processes through a more proactive and informative actions and decision-making

[22].

Predictive data analysis comprises the use of several data mining techniques in order to

analyse and extract patterns from current and past observations and build models (e.g.,

statistical inference or based on machine learning) capable to estimate values or predict

events, usually for a future period. The predictive analytic models can be a simple

univariate moving average model [14], which can estimate the next values based on the

trend identified in the previous value, or a more complex neural network model [15],

which support nonlinear and multivariate functions.

The moving average model is a common approach to predict future points in univariate

time series (time series forecasting) [14]. It assumes that the future values depend

linearly on the current and past observed values. It is a quite simple model that can

provide accurate outputs for many application cases. However, it only supports

stationary time series, i.e. time series which the mean and variance do not change over

time. In order to support non-stationary and other features, in the context of time series

forecasting there exist more complex models such as the ARIMA (autoregressive

integrated moving average) [14].

In predictive analytics, while time series forecasting focuses in the prediction of values

of a single time series, the regression analysis [16] comprise an approach employed to

predict the value of a dependent variable (not necessarily a time series) based on the

values of one or more independent variables. In this sense, a moving average model can

be viewed as a simple linear regression model. The process of regression analysis

modelling encompasses the analysis of how the value of the dependent variable behaves

when the values of the independent variables vary. Then the regression model, usually

consisting in a mathematical function, is created to be able to estimate the expected

average value of the dependent variable given the values of the independent variables.

For example, a health insurance company can use a predictive model that take into

consideration many independent variables, such as age, gender and medical records of

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 15/48

past and current clients in order to estimate the most probable costs of a new client, with

an acceptable level of reliability, and based on that define the insurance price.

In this context, machine learning [17] comprises another field that provides several

approaches used for prediction that has an overlap with regression analysis. Usually

machine learning techniques are used in cases where the relationship between input and

output variables are very complex and its nature is unknown. In this context, these

techniques emulate some human cognition aspects to learn the relationship between

variables from training examples.

There are several techniques and algorithms to perform the predictive analysis

modelling. The linear regression is one of the simplest, but there are others like logistic

regression, which as opposed to previous techniques that estimate numerical variables,

focuses in the prediction of a categorical variable. Additionally, there are a set of

machine learning algorithms with mix concepts, such as regression trees, or those that

are only based on machine learning techniques, such as neural networks and support

vector machines [17].

The main focus of such techniques and algorithms is to generalize the patterns found in

past and historical data in a predictive model that can be used to estimate values or

predict events given the input variables, even if the input values were not presented in

the historical dataset. In order to build such models several tasks should be performed

(see Figure 4). In the process of data mining the main tasks comprehend data preparation

(pre-processing and cleaning data), modelling (split data in training and test sets, and

apply the algorithms to build the predictive models), and evaluation (use the model in

the test set and evaluate the output accuracy). In this context the accuracy and usability

of outputs will depend on the quality and quantity of data available to build the model.

Usually, the prediction outputs are not so accurate, however they are accurate enough

to generate some trustful values to the application.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 16/48

Figure 4 - Predictive Data Analysis Process Overview

In many scenarios, particularly in dynamic environments, the variables can evolve over

time, presenting continuous changes, characterizing the drift concept [18]. This imposes

some challenges for data analysis techniques, which need to support evolving data

streams, requiring some adaptive learning mechanisms for a continuous assessment and

update of the predictive models as new data become available and current models

become obsolete. For example, predictive models to forecast the weather conditions

need to consider the different seasons. Other challenges that can be faced by such

techniques encompass the need to deal with missing values (information

incompleteness), as well as computational and response time constraints, which can

directly affect the accuracy of predictive models as also the selection of the predictive

model itself.

3.3.2. Data Correlation

Data correlation comprises the process of analysing the statistical relationship between

two continuous variables or sets of data, i.e., measure how and how much they are

dependent or linked together [19-20]. For instance, considering two variables if their

values increase or decrease together it characterizes a positive correlation, on the other

hand a negative correlation indicates that the value of one variable increase while the

other decrease. In this sense, the correlation between two datasets is given by a

coefficient that ranges from 1 (perfect positive correlation) to -1 (perfect negative

correlation). A coefficient equals to 0 means that there is no correlation.

The correlation analysis is widely exploited in practice since it can provide evidences

that exist a behavioural pattern among two variables. For instance, if it is known that

when the value of a variable increases, the value of the other variable also increases with

a given rate, this can be used to understand the causes of an event or generalized in a

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 17/48

mathematical model that can be used to predict future values. In spite of that, the results

of the correlation analysis need to be treated carefully, since it is easy and tempting to

have early conclusions regarding that the changes in one variable is the cause of the

changes in the other variable. However, correlation does not imply causation, i.e., in

reality the appearance of a correlation does not mean that one thing causes the other,

since there may be others unknown factors that influence the behaviour of the variables

[21].

There are many techniques to compute the correlation coefficients. The Pearson

correlation coefficient (also known as Pearson product-moment coefficient) [19-20]

comprise the simpler and most common, which is only able to indicate that the

relationship between two variables can be approximated by a linear function, i.e., the

relationship follows a straight line. The Pearson correlation coefficient can be obtained

by dividing the covariance of the two variables (i.e., how much they change together)

by the product of their standard deviations (i.e., the variation or dispersion of their

values). There are also others well-known techniques, based on rank correlation

coefficients [19-20], such as Spearman rank correlation coefficients and Kendall rank

correlation coefficients which don’t require that the variables present a linear

relationship.

As previously shown, correlation is a simple and suitable approach to identify and

characterize the linear relationship between two variables. Multiple correlation can be

computed by fixing a variable and using a linear function of the other variables. Another

more specific type of correlation is the autocorrelation [14], which is mainly used in the

field of signal processing where a signal is correlated with itself at different points in

time in order to find periodic patterns.

On the other hand, there are more sophisticated and robust approaches that can be used

to identify other types of relationships, e.g., that follows a curve, or even more complex

relationships, e.g., when the behaviour of one variable is correlated with the behaviour

produced by the combination of other two or more variables. Most of this approaches

are inside the context of data mining [12], where descriptive and predictive analytics

provide several techniques and methods that help to identify and understand the

different kinds of relationships or correlations that can be found among the datasets, as

well as the causes of these relationships.

In this context, regression analysis [16] is a well-known and widely used approach to

understand and mathematically modelling the relationship between a dependent variable

and a set of independent variables. Unlike correlation analysis, regression analysis can

be used to infer and test causal relationships. In both descriptive and predictive analytics

regression analysis can be used to understand the patterns and create models capable to

describe and predict behaviours and events for different scenarios and applications

(Figure 5).

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 18/48

Figure 5 - Data Correlation Application Overview

3.4. Data Visualization Layer

In the past, the different areas involved in the manufacturing process were extremely

disconnected, with information such as schedules, job orders and inventory lists being

written down and passed along the line in paper format. This could typically lead to several

miscommunication issues, as well as making any change required due to a given issue in

production an excruciating task, consequently resulting in inefficient and often

unpredictable procedures.

With the evolution of Information and Communications Technologies (ICT), along with the

emergence of concepts like Cloud Computing, the Internet of Things and the Industry 4.0

movement (see Figure 6) modern shop-floors are generating larger and larger volumes of

data. Researchers estimate that every year about 1 Exabyte (1M Terabyte) of data is being

generated worldwide, of which a considerably large portion is available in digital form. Due

to this, the approaches based on paper forms became unsuitable to deal with such a scenario.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 19/48

Figure 6 - Evolution of Industry 4.0 Related Technologies

Furthermore, if data is simply presented textually, finding meaningful information that can

provide a business advantage in millions of data entries becomes a task similar to finding a

needle in a gigantic haystack. Consequently, without a proper way to interpret and explore

these large volumes of data, most of them are deemed useless and databases are more likely

to act as data ‘dumps’ instead [23].

To avoid this, and in order for proper data analysis to be effective, it is very important to

integrate the human in the loop, combining his or her general knowledge and creativity with

the processing and storage capacities of modern IT. Hence, the main goal of data

visualization is to present data in such a way that a human can get insight into said data

which would have been incomprehensible otherwise, drawing conclusions and directly

interacting and acting upon the data.

Bottom line is, data visualization enables or facilitates the comprehension of data, as well

as the detection of patterns, trends and relationships contained in large complex data sets,

being a largely important tool for data analysis when allied with a human’s perception and

knowledge.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 20/48

4. Technical Description and Implementation

This section presents a possible implementation of each of the modular layers described in

Section 3. Each of the chosen technologies is detailed along with an overview of their

applicability in relation to the requirements already defined in the previous sections. However,

due to the modular framework design, it is possible for any of these layers to be switched out

for a different implementation, or even accommodate existing technologies (e.g. proprietary

data acquisition systems) in a given shop-floor, thus being well aligned with PERFoRM’s aim

to confer legacy systems with the additional intelligence and flexibility that Cyber-Physical

Systems enable.

4.1. Agent-based Data Acquisition Network

4.1.1. The JADE Framework

The Java Agent DEvelopment Framework (JADE) framework facilitates the

implementation of agent-oriented approaches, serving as a MAS-oriented distributed

middleware that provides a flexible domain-independent infrastructure. This

infrastructure facilitates the development of complete agent-based applications by

providing a run-time environment implementing the required basic features required by

agents, their core logic and various auxiliary graphical tools [24]. JADE is written

completely in Java, benefitting from the varied array of language features and third-

party libraries widely available.

4.1.2. Component Monitoring Agent

The Component Monitoring Agent (CMA) class acts as the core for both the data

extraction and pre-processing tasks. To allow an easier comprehension of its

implementation, a class diagram of the CMA’s associated data model is provided in

Figure 7.

Figure 7 - CMA's Class Diagram

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 21/48

As seen above the CMA class has two different interfaces associated, IDataCollection

and IDataDescription. The former possesses three different methods which enable the

establishment of communications between the agent and the hardware, namely

initializeHWConnection and closeHWConnection, and also the ability to read a given

value indicated by a certain id tag via the readHardwareValue method. The

IDataDescription interface provides the method which allows the agent to learn from

and external source which device and associated data fields it is responsible for

monitoring. This is achieved through the getMonitoringDataDescription method.

The CMA class also has four different behaviours implemented into its logic, supported

by the following data fields:

 circularBuffer is the main data buffer where the latest extracted values are

stored. As previously mentioned in 3.4.2, each CMA/HLCMA contains its own

circular buffer in order for it to be able to compute any required values, taking

into account recently extracted data. It is implemented as an ArrayList of

elements of the MonitoredSystemValue class, which can be seen in Figure 4.5.

This class contains a series of attributes that fully describe the associated

abstracted value.

Figure 8 - MonitoredSystemValue Class Diagram

 dataDescriptionLib is an instance of a IDataDescription’s implementation,

required for the agent to learn which data values it should collect and process.

Even though its implementation varies depending on the application, it should

always provide the agent the method listed in Figure 7.

 dataCollectionLib is an instance of a IDataCollection’s implementation. It

enables the agent to communicate with the hardware in order to collect relevant

data as learned in the process described in the previous bullet point. It should

also always provide the agent the methods listed in Figure 7.

 lastComputedValues functions similarly to the circularBuffer, however only

recently computed values are stored in it. Its existence allows the agent to save

precious processing time by making sure it is not propagating values that have

already been processed through the system. This could happen due to how the

processing behaviour is triggered, which will be explained in further detail in a

following section.

 monitoredEntity is a simple string containing the name of the component or

subsystem being monitored (e.g. Gripper1, SafetyGroup2).

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 22/48

 myMonitoringDataDescription is an object containing the lists of

MonitoredSystemValue elements that the CMA/HLCMA is expected to either

collect or compute from extracted values. Both classes are detailed in Figure 9.

Figure 9 - Monitoring Data Description Class Diagram

 parent is a string that references as the name suggests the agent’s parent in

the monitoring tree.

4.1.2.1. Acquiring the Monitoring Data Description

In order for a CMA to start collecting and processing data it is mandatory that the

Monitoring Data Description (MDD) is loaded before-hand. For this purpose, during

the CMA’s initialization an instance of the Event Description Library (EDL) is

created, allowing the agent to call the getMonitoringDescription method which

returns an object of the MonitoredSystemValue class. As described in Figure 9, this

object contains two ArrayLists, pollingData and processedData, detailing which data

the CMA needs to collect periodically and which values require computation on the

agent’s side. Figure 10 shows the steps executed by the CMA during this task.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 23/48

Figure 10 - Acquiring the Monitoring Data Description

As it can be seen in Figure 10, by using the EDL the CMA is able to retrieve a list of all the

data related to its monitored component from an external source. It is pre-established that the

MDD must provide the source for each data event described, therefore by checking this

parameter the CMA can determine if the value needs to be calculated or if it is extracted directly

from an external source (in case the parameter refers to anything other than the agent itself),

separating the aforementioned ArrayList into the two data fields that make up the MDD class,

pollingData and processedData.

4.1.2.2. Data Collection

Data collection can happen in two different ways, either by having the agent

periodically extracting data or by having this process triggered by the detection of a

change in a given monitored data value.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 24/48

In the first scenario, considering that this is a repetitive process, a TickerBehaviour

was chosen for the implementation of the readHardwareValue behaviour. This

behaviour is repeatedly executed at a fixed rate, defined during the agent’s

deployment, as illustrated in Figure 11. During its initialization, the CMA iterates

over the pollingData list contained within the myMonitoringDataDescription

attribute, launching a readHardwareValue behaviour for each iterated element.

Figure 11 - CMA Periodic Data Collection Implementation

For the sake of enabling the agent-device interaction a communication interface is

also required. For this purpose the Data Collection Library (DCL) provides three

different methods, initializeHWConnection, closeHWConnection and

readHardwareValue. The first two respectively establish and close the connection

to the source device (this connection is maintained while the CMA is running),

while the latter provides a means to extract a specific data value from it.

In the second case, the extraction is triggered by the DCL itself. In situations where

this is supported by the underlying technology, with the agent reference passed as

an argument in the initializeHWConnection (see Figure 7), the DCL is able to

launch behaviours in the associated CMA. As such, using a simple event listener,

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 25/48

upon detecting a change in a monitored data value the DCL can extract it and using

the agent reference it can directly deploy the behaviours responsible for sending the

extracted data up the monitoring tree.

4.1.2.3. Data Pre-Processing

The DataProcessingBehaviour detailed in Figure 12 is responsible for handling all

the computations required to calculate new values from the extracted data. Since

this behaviour is simply launched as a consequence of new data having been

collected, ending after it finishes its task, a OneShotBehaviour was used for its

implementation.

The CMA starts off by iterating over the MDD ArrayList elements that describe

which values it is expected to calculate. For each one of these it checks if the values

stored in the circularBuffer at that given point in time meet all the associated sets of

conditions, and if so it creates a new instance of the MonitoredSystemValue class to

store the new computed data. Afterwards it stores the new data in the

newProcessedValues ArrayList and moves on to test whether the remaining

processedData elements can be calculated.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 26/48

Figure 12 - Data Pre-Processing Behaviour Implementation

As previously shown in Figure 9, the conditions that define MonitoredTimespan and

MonitoredState objects were implemented resorting to a HashMap. In the former’s

case two different HashMaps were used, startConditions and endConditions. Both

use the correspondent state’s ID as the key, while the pair is the actual state’s value

that satisfies the condition. For the latter only one set of conditions exist, more

specifically the stateMapping, in which another HashMap is used as the key, and

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 27/48

the corresponding state designation is used as the value. A simplified example of a

stateMapping for a gripper’s current state can be visualized in Table 1.

Table 1 - Example of a gripper's stateMapping

Hardware I/O Current State

Open True

Open
Closed False

Close_Signal False

Open_Signal False

Open False

Closed
Closed True

Close_Signal False

Open_Signal False

Open False

Opening
Closed False

Close_Signal False

Open_Signal True

Open False

Closing
Closed False

Close_Signal True

Open_Signal False

After all possible values have been calculated and stored in the newProcessedValues

list, for each element contained in it the CMA initiates a new CFP through the

CloudOutputBehaviour in order to select a suitable OCA to export the new data to

external entities. In similar fashion, for each CFP initiated a Request is also sent to

the CMA’s parent through the SendDataInitiator behaviour.

4.1.2.4. Transmitting Monitored Data

The last task performed by the CMA is the transmission of both collected and

processed data. This transmission occurs when either of the behaviours described in

the previous two sections terminates its execution, and consists in two different

behaviours responsible for sending said data to both the CMA’s parent HLCMA and

an available OCA from the Output Cloud.

The SendDataInitiator behaviour consists in a simple point-to-point communication

between a CMA and its parent HLCMA. When the CMA finishes the execution of

a readHardwareBehaviour or receives new data via the event listener in the DCL,

it serializes the new data value and sends a request to its parent containing the

serialized data. This can be seen in Figure 13.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 28/48

Figure 13 - SendDataInitiator Behaviour

The CloudOutputBehaviour, observed in Figure 14, differs mainly in the fact

that whilst the communication between a CMA and its parent HLCMA is point-

to-point through and through, in this case the interaction starts out between the

CMA and possibly many different OCAs.

Firstly the CMA diffuses CFPs to the OCA cloud to find an available agent to

process the data exportation. Upon receiving the proposals from possible OCAs,

it evaluates them according to the established metric, in this case the response

time, and selects only one to process its request, sending refusal messages to the

rest. At this point the CMA serializes the fresh monitoring data and sends it in

the Accept-Proposal message to the selected OCA, awaiting its response,

finalizing the CMA’s role in the process.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 29/48

Figure 14 - CloudOutputBehaviour Implementation

4.1.3. Higher-Level Component Monitoring Agent

The CMA and HLCMA classes are very similar from an implementation standpoint,

being that the latter is simply an extension of the former. As such, the HLCMA displays

all the behaviours and attributes previously described for the CMA, having just the

added capacity to receive and process data computed by lower-level CMAs or HLCMA

s. The data model representing this extension, along with the relationship between the

CMA and HLCMA classes is presented in Figure 15.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 30/48

Figure 15 - HLCMA's Data Model - Class Diagram

As illustrated, the HLCMA class inherits the CMA’s data fields and its behaviours,

presenting a similar functionality. Also, as indicated, a HLCMA can have multiple

CMAs associated to it, however, each CMA can only have exactly one parent HLCMA,

or none.

The point where the CMA and HLCMA differ is in the existence of the

NewDataResponder behaviour, which will be described later. Being a higher-level

entity, the HLCMA can only gather data from the subsystem it abstracts but also from

the agents in the lower layers of the monitoring tree.

4.1.3.1. Receiving Pre-Processed Data

The NewDataResponder behaviour is based on JADE’s AchieveREResponder class,

allowing the HLCMA to process a CMA/ HLCMA’s Request message containing

data processed at a lower-level of the monitoring tree. This behaviour is detailed in

Figure 16.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 31/48

Figure 16 - NewDataResponder Behaviour

As seen in Figure 16, after receiving a Request message from an associated lower-

level CMA/ HLCMA, the parent HLCMA deserializes its content in order to obtain

the newly processed data, storing it in its local circularBuffer, initiating the

DataProcessingBehaviour afterwards.

4.1.4. Output Coordinator Agent

The OCA acts as the gateway that allows data to flow from the monitoring architecture

to external entities, relaying that information through the use of a Data Output Interface

(DOI). This agent can existing as a singleton entity, or as a cloud of distributed OCAs

in order to avoid a single point of failure in the output communications. The class

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 32/48

diagram depicting the data model for both the OCA and the DOI can be observed in

Figure 17.

Figure 17 - OCA's Data Model - Class Diagram

Any implementation of the interface must provide a sendOutput method that allows the

OCA to send objects of the MonitoredSystemValue class to relevant external entities

such as a remote historical DB or a large processing network.

4.1.4.1. Exporting Data

The OCA’s behavioural logic comprises two different behaviours, the first of which

is the IncomingDataResponder, described in Figure 18. Having been implemented

based on a ContractNetResponder behaviour, it gives the agent the capability of

handling negotiation requests (in the form of a CFP, as later described in Figure 21)

from a CMA/HLCMA, replying with proposals and handling their response.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 33/48

Figure 18 - OCA's IncomingDataResponder

Upon receiving an Accept-Proposal message, the OCA’s IncomingDataResponder

launches the SendOutputBehaviour, an extension of the OneShotBehaviour class,

which in turn calls the DOI’s corresponding method, sendOutput, which interfaces

with the external entities in order to relay the monitored data to them. Since the DOI

is a generic interface, the agent isn’t concerned with neither its implementation nor

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 34/48

the type of external entity it interfaces with, meaning that the agent’s logic is

unchanged regardless of the technology used in the other end.

4.1.5. Agents Communication

Since all JADE agents are FIPA compliant [25], the communications established

between were implemented according to the specifications of two different FIPA

protocols, FIPA Request and FIPA Contract Net. Both protocols are analysed in the sub-

sections ahead.

4.1.5.1. FIPA Request Protocol

The FIPA Request Protocol [26] allows agents to perform point-to-point

communications, being therefore able to request another agent to perform a certain

action. As illustrated in Figure 19, this protocol specifies that the communication

starts when the Initiator agent sends a request to the Participant agent.

Figure 19 - FIPA Request Protocol

Upon receiving a request, the Participant can either accept it, sending an agree as a

reply, or refuse it sending a refuse message back. After it finishes performing the

requested action, in case it was completed successfully the Participant sends an

inform message to the Initiator instructing it of its completion. Otherwise it sends a

failure message.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 35/48

4.1.5.2. FIPA Contract Net Protocol

The Contract Net Protocol (FIPA, 2000) promotes a negotiation between an Initiator

and several Participant agents, allowing the former to evaluate which Participant

agent or agents are more suitable to perform a certain task.

As it can be seen in Figure 20, the protocol dictates that communication starts with

an Initiator sending a call for proposals to m Participant agents, where m is the given

number of agents, which can in turn refuse the communication if for some reason it

cannot perform the requested task, or reply with a proposal otherwise. After the

Initiator has received all the responses, regardless of them being refusals or actual

proposals, it can start evaluating them.

Figure 20 - FIPA Contract Net Protocol

For each proposal that the Initiator accepts it will send an accept-proposal message

to the associated Participant, who starts processing the requested task. Upon the

completion of the requested task, each Participant replies with an inform message

indicating success, or ultimately if the task was unsuccessful a failure message is

sent instead.

Proposals that do not pass the evaluation process also receive a reply, in this case a

reject-proposal message is sent to the associated Participants, terminating the

interaction between them.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 36/48

4.1.5.3. Agents’ Interactions

These interactions are summarized in Table 2, where each row corresponds to a

different communication initiator (INIT) and each column represents the different

responders (RESP).

Table 2 - Summary of the Agent Interaction

 RESP

INIT
CMA HLCMA OCA

CMA FIPA Request FIPA Contract Net

HLCMA FIPA Request FIPA Contract Net

OCA

As suggested by [27], in a distributed scenario the use of JADE’s standard message

transfer protocol conjugated with potential network delays takes its toll in the

system’s performance as a whole. For this reason the interactions between the

agents that constitute the monitoring infrastructure were kept to a bare minimum to

improve the system’s overall performance.

A more complete view of the entire process can be seen in the sequence diagram

depicted in Figure 21, which showcases the data flow from the collection at the

machinery level up until it is transported to the higher-level layers via the OCA.

Figure 21 - Monitoring Agents' Interactions

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 37/48

4.2. Data Message Queue Layer

4.2.1. Apache Kafka

Any implementation of the DQL needs to take into consideration the requirements

specified in Subsection 3.2 (fundamental architectural principles and the requirements

for the DQL, respectively), more specifically in terms of scalability, capacity to handle

high volumes of data, low latency and reliability. With this in mind, Apache Kafka [28,

29] is proposed as a possible framework to implement such a data queue.

Kafka is a fault-tolerant, highly scalable, distributed messaging system. In essence, it

functions with a publish-subscribe approach, allowing producers (data sources, in this

case the agents in the DAL) to publish data messages which are maintained in categories

called topics, as observed in Figure 22.

Figure 22 - Apache Kafka Overview

These can be subscribed by consumers (represented by the DPL nodes), being divided

into ordered partitions supporting message persistence and replication. Kafka’s message

management is optimized for low latency and high throughput, with documented uses

for even real-time applications [30].

Thus, for the purpose of this implementation, Apache Kafka acts as the link between the

MAS and Storm’s entry point (the spout element, detailed in Section 4.3), as illustrated

in Figure 23.

Figure 23 - Kafka's Implementation as an integration layer

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 38/48

4.3. Data Analysis Layer

4.3.1. Apache Storm

Finally, for the DPL Apache Storm is considered, being a distributed stream processing

system which easily integrates with both databases and queuing technologies (such as

the aforementioned Apache Kafka).

Storm is a distributed real-time computation system, working somewhat similarly to

how Hadoop provides a set of general primitives for doing batch processing, it provides

a set of general primitives for doing real-time processing.

Storm’s processing runs in topologies, which wire data through a series of nodes in a

directed acyclic graph (DAG), each containing certain processing logic, with the

associated links specifying the data flow. An overview of this behaviour can be seen in

Figure 24.

Figure 24 - Apache Storm Overview

Furthermore, Apache Storm is an extremely versatile tool, supporting the development

of spouts and bolts in several other languages other than Java, through the inclusion of

a “Multi-Language” (or “Multilang”) protocol. As such, bolts with complex data

analysis functionality that would be extremely difficult and elaborate to write in Java

can be written for instance in R, being later on easily integrated into the topology like a

“regular” bolt.

Taking this characteristics into account, and focusing on the PERFoRM requirements

and goals, a possible topology was implemented to tackle the project’s particular needs

in terms of real-time data analytics. This topology is represented in Figure 25.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 39/48

Figure 25 - Real-time Data Forecasting Topology Overview

Each of the individual components comprised in the proposed Storm topology will be

approached in further detail in the coming subsections.

4.3.1.1. ComponentSimulationSpout

The ComponentSimulationSpout (CSS) was implemented to serve as a data source

to be used for testing the Storm Real-time analysis topology.

In essence it has three main operation modes, which are:

 Regular operation: Normal behaviour simply consists in a random integer

between a given minimum and maximum value being generated and emitted

at a specific data rate, simulating the acquisition of simple data from a

component under normal conditions.

 Spike Failure: This mode of operation simulates an equipment failure which

causes a sudden spike in the absolute value of the extracted data (maintaining

an increased value thereafter), allowing for instance to test the topology’s

behaviour when data suddenly spikes above the threshold boundaries defined

as regular operation conditions.

 Incremental Failure: Contrastingly, this mode prompts the absolute value of

the simulated data to be increased steadily over a given period of time, enabling

the testing of trend detection and prediction of future values based on said

trend.

With these three modes of operation, different situations can be simulated in order

to test the topology’s performance under a controlled setting. However, once the

topology is required to be applied in a production environment, this spout can be

simply replaced by a Kafka spout which consumes data from a Kafka topic, or a

different kind as deemed necessary based on the associated technologies.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 40/48

4.3.1.2. FilterBolt

As the source spout (regardless of it being the aforementioned simulation spout, or

a production ready one) propagates the source data downstream (see Figure 25), a

bolt responsible for filtering component specific data is necessary. This functionality

can be seen in Figure 26.

Figure 26 - FilterBolt Functionality

Simply put, the data coming from the source spout is checked to see whether or not

it pertains to the associated component. If it is, the bolt propagates it further

downstream, otherwise it is ignored so that the appropriate sub-topology can process

it instead.

4.3.1.3. RollingAverageBolt

A simple rolling average (also referred to as simple moving average, or SMA), is an

unweighted mean of the last n values of a given data set, as dictated in the formula

below:

𝑆𝑀𝐴 =
∑ 𝑉𝑖 𝑛

𝑖=1

𝑛

The calculation of a rolling average serves to smooth the data, aiding in the detection

of emerging trends and patterns that could be otherwise hard to observe. Being based

on the x most recent values, it can provide a more realistic basis for forecasting

future values and take corrective action as needed.

The RollingAverageBolt (RAB) employs such a formula, storing incoming raw

values in a sliding window with a fixed size, emitting the SMA value on each

iteration (every time new data arrives), as illustrated in Figure 27.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 41/48

Figure 27 - RollingAverageBolt Functionality

The RAB was implemented by extending the functionality of a BaseWindowedBolt,

essentially maintaining a window of a fixed sized passed as an argument upon

initializing the topology, along with a window update rate (e.g. every new value).

As such, new data tuples are added to a sum value and kept there for the duration of

the window, being removed (subtracted from the sum) upon expiration. On each

iteration, the sum is divided by the window length and the resulting SMA value is

propagated downstream.

4.3.1.4. ForecastBolt

The implemented ForecastBolt (FCB) estimates an ordinary least squares regression

model with a single independent variable based on the formula below, where m and

b represent the slope and the intercept, respectively.

𝑦 = 𝑚𝑥 + 𝑏

Observations (x,y pairs) can be added one at the time to the model as they are

received by the node in order to update it to enable forecasting future y values for a

given x. These observations are not stored in memory, so theoretically there is no

limit to the number of observations that can be added to the model itself.

4.3.1.5. AlarmBolt

The AlarmBolt (AB) is responsible for processing the incoming forecasts produced

by the FCB in order to ascertain which values surpass a given threshold, triggering

an alarm response. An overview of the bolt’s behaviour is provided in Figure 28.

Figure 28 - AlarmBolt Functionality

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 42/48

Additionally, the possible existence of false positives is also considered. As seen in

Figure 28, which depicts a case where a forecast above the alarm threshold has been

detected, each AB evaluates the incoming forecast values according to a given set

of rules, triggering an alarm response only when these rules are met, whilst ignoring

singleton irregularities in the data, thus acting as a slightly more complex FilterBolt.

These alarm responses can in turn be used as triggers for reconfiguration

mechanisms, predictive maintenance or other such behaviours.

4.4. Data Visualization Layer

The data visualization was implemented as a Java application which updates each chart as

new data arrives in near real-time. This makes it easier to visually understand and interpret

the data being outputted by the processing network, allowing it to be used for instance at

the shop-floor level as a Human-Machine Interface (HMI) to support operators in run-time.

An overview of the data visualization application can be seen in Figure 29.

Figure 29 - Data Visualization

As depicted, the application allows the user to navigate to each of the monitored Key

Performance Indicators (KPI), displaying relevant information such averages and forecast data

in near real-time.

Furthermore, Figure 29 showcases the incremental failure scenario described in Subsection

4.3.1.1, where the grey plot represents the observed raw data which steadily escalates, the

yellow values provide the smoothed data calculated by the rolling average and finally the

forecast for 500 values into the future, along with the pre-defined alarm threshold which acts

as a boundary for normal operation conditions.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 43/48

5. Preliminary Tests

As indicated in Subsection 4.3.1.1, a simulation spout was implemented in order to emulate the

behaviour of a shop-floor component. In essence, the ComponentSimulationSpout is configured

according to the following settings:

 Data Rate: As the name suggests, specifies the intervals at which a new observation

(x,y pairs) is generated.

 Data Range: Indicates the minimum and maximum values between which the new data

point is generated.

 Forecast: The forecast parameter defines the number of x entries into the future for

which the corresponding y pair value should be forecast.

 Failure: Acts as a control variable in order to define the spout’s operation mode, being

either normal or failure.

 Failure Type: If failure mode is enabled, this parameter defines the type of failure to be

simulated, more specifically spike or incremental.

 Failure Duration: Lastly, the Failure Duration indicates how long the failure condition

will last.

The tests documented in this section consisted in running the topology in the three different

modes, namely normal operation conditions, simulated spike failure and incremental failure.

Using the data visualization component described in Subsection 4.4, the behaviour illustrated

in Figure 30 was obtained for normal operation conditions.

Figure 30 - Simulation Scenario - Normal Conditions

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 44/48

For these tests, the settings were defined as shown in Table 3:

Table 3 - Simulation Settings

Data Rate 100 (ms)

Data Range [100 , 200] (ms)

Forecast 500

Failure TRUE/FALSE

Failure Type SPIKE/INCREMENTAL

Failure Start Delay 600 * Data Rate = 60000 (ms)

Failure End Delay 1200 * Data Rate = 120000 (ms)

As seen in Figure 30, three different data types are charted. The dark grey line represents the

raw values coming directly from the source spout, with the values ranging from 100 to 200

milliseconds as specified in the ComponentSimulationSpout settings (see Table 3). The rolling

average can be seen in yellow, representing and smoothed dataset, eliminating outliers and

preparing the incoming data points to be processed. Finally the forecast is shown in blue,

depicting the predicted value of the y variable 500 data point entries into the future.

Upon inducing a spike failure, the corresponding reaction can be seen in Figure 31.

Figure 31 - Simulation Scenario - Spike Failure

As it can be observed, after the time specified in the Failure Start Delay parameter has elapsed

(600*100ms = 60000ms = 60s) a spike increase in the raw data values is detected, causing the

rolling average values to suddenly increase as well.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 45/48

This in turn causes the forecast values to skyrocket due to the way the least squares model is

estimated. Clearly this is not an ideal application scenario since there was no trend in the data

that would allow the failure to be predicted. Still, this occurrence can be detected due to the

forecast exceeding the alarm threshold, causing an alarm event to be emitted, triggering a

possible self-adjustment or maintenance response.

A better suited scenario would be the case where there is an underlying trend in the data being

analysed which can be used to anticipate such a failure or machine breakdown event. In order

to test this, the incremental failure mode was implemented, as it can be seen in Figure 32.

Figure 32 - Simulation Scenario – Incremental Failure

In this case, instead of a sudden spike in the raw data values generated by the

ComponentSimulationSpout, a gradual increase in the observed value can be detected, thus

presenting a rising trend in the data. With this, the ForecastBolt can anticipate this behaviour

and allow an intervention before things get too out of hand. This bolt can also be adjusted and

further refined, both in terms of varying its configuration parameters or even the algorithm

itself, allowing for predictions to be either faster or slower to respond to the changes in the raw

data values, controlling issues such as false positives or late detections.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 46/48

6. Conclusion

This document entailed the description of both the architectural design as well as a technical

implementation of a real-time data analysis framework developed under the H2020 PERFoRM

project, capable of extracting raw real-time data and compute it in order to translate said data

into a business advantage for manufacturers. This tackles one of the main challenges being

faced nowadays in the industry concerning the large amount of data being generated but

unutilized, and is well aligned with the Industry 4.0 vision of factory interconnectivity and the

big data concept.

To this end, the document starts by proposing a layered architecture, decomposing the overall

complexity of this multidisciplinary challenge into several different levels, each with its own

characteristics, requirements and goals, namely:

 The Data Acquisition Layer, which is responsible for extracting raw data from the shop-

floor and needs to be able to cope with possible real-time constraints, different

communication protocols, scalability and pluggability concerns.

 The Data Queue Layer, charged with the integration of the data acquisition and

processing modules, and required to support high throughput and reliability.

 The Data Processing Layer, responsible for detecting trends and correlations in the data,

as well forecasting future values, all the while contemplating the issues of performance

and scalability.

 The Data Visualization Layer, which facilitates the interpretation and understanding of

the data, enabling the integration of the human in the process.

Additionally, a possible implementation of each of the proposed architecture’s layers was

presented, contemplating several different technologies and the applicability of each of them

regarding the requirements imposed by each of the different modules. This implementation was

subjected to some preliminary testing under a simulated environment, in which promising

results were shown in terms of the early detection and prevention of possible machine failures

or breakdowns in different situations, serving as an input to trigger self-adjustment mechanism,

thus successfully supporting PERFoRM’s aims for seamless reconfigurability and visualization

of manufacturing processes.

References

1. Deliverable D1.1, “Report on Decentralized Control & Distributed Manufacturing

Operation Systems for Flexible and Reconfigurable Production Environments”,

PERFoRM project, 30th March 2016.

2. Deliverable D1.2, “Requirements for Innovative Production System Functional

Requirement Analysis and Definition of Strategic Objectives and KPIs”, PERFoRM

project, 29th March 2016.

3. Deliverable D2.2, “Definition of the System Architecture”, PERFoRM project, 28th

September 2016.

4. Deliverable D7.1, “Siemens Description and Requirements of Architectures for

Retrofitting Production Equipment”, PERFoRM project, March 2016.

5. Deliverable D8.1, “Micro Electric Vehicles Description and Requirements of

Architectures in View of Flexible Manufacturing”, PERFoRM project, 29th March

2016.

6. Deliverable D9.1, “Description of Requirements and Architecture Design”,

PERFoRM project, May 2016.

7. Deliverable D10.1, “Use Case goals/KPIs and Requirements Defined”, PERFoRM

project, September 2016.

8. Andre Dionisio Rocha, Ricardo Peres, and Jose Barata. An agent based monitoring

architecture for plug and produce based manufacturing systems. In 2015 IEEE 13th

International Conference on Industrial Informatics (INDIN), pages 1318-1323. IEEE,

2015.

9. Andre Dionisio Rocha, Diogo Barata, Giovanni Di Orio, Tiago Santos, and Jose

Barata. Prime as a generic agent based framework to support pluggability and

reconfigurability using different technologies. In Doctoral Conference on Computing,

Electrical and Industrial Systems, pages 101-110. Springer International Publishing,

2015.

10. Andre Dionisio Rocha, Ricardo Silva Peres, Luis Flores, and Jose Barata. A

multiagent based knowledge extraction framework to support plug and produce

capabilities in manufacturing monitoring systems. In Mechatronics and its

Applications (ISMA), 2015 10th International Symposium on, pages 1-5. IEEE, 2015.

11. S. Finlay. Predictive Analytics, Data Mining and Big Data. Myths, Misconceptions

and Methods. Palgrave Macmillan, 1st ed., 2014.

12. J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. Morgan

Kaufmann, 3rd ed., 2011.

13. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. “From Data Mining to Knowledge

Discovery in Databases,” AI Magazine, vol.17, n.3, pp. 37-54, 1996.

14. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung. Time series analysis:

forecasting and control. John Wiley & Sons, 5th ed., 2015.

15. S. Haykin. Neural Networks and Learning Machines, Pearson, 3rd ed., 2009.

16. N.R. Draper, H. Smith. Applied regression analysis. John Wiley & Sons, 3rd ed.,

1998.

PERFoRM
Horizon 2020 – Factories of the Future, Project ID: 680435

D3.2 Real-time Process Information Exploitation 48/48

17. C. Bishop. Pattern recognition and Machine Learning. Springer, 2006.

18. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia. “A survey on concept

drift adaptation.” ACM Computing Surveys (CSUR), vol.46, n.4, p.44, 2014.

19. P. Bobko. Correlation and Regression: Applications for Industrial Organizational

Psychology and Management. SAGE Publications, 1st ed., 2001.

20. J. Cohen, P. Cohen, S.G. West, L.S. Aiken. Applied Multiple Regression/Correlation

Analysis for the Behavioral Sciences. Routledge, 3rd ed., 2003.

21. J. Aldrich. "Correlations Genuine and Spurious in Pearson and Yule". Statistical

Science, vol.10, n.4, pp. 364-376, 1995.

22. J. Lee, B. Bagheri, H.A Kao. "Recent advances and trends of cyber-physical systems

and big data analytics in industrial informatics." In International Conference on

Industrial Informatics (INDIN). 2014.

23. Keim, Daniel A. "Information visualization and visual data mining." IEEE

transactions on Visualization and Computer Graphics 8.1 (2002): 1-8.

24. Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing Multi-Agent Systems

with JADE. Developing Multi-Agent Systems with JADE (pp. 1–286).

doi:10.1002/9780470058411

25. Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE–A FIPA-compliant agent

framework. Proceedings of PAAM, 97–108. doi:10.1145/375735.376120

26. FIPA. (2002). FIPA Request Interaction Protocol Specification. Retrieved from

http://www.fipa.org/specs/fipa00026/SC00026H.pdf

27. Ribeiro, L., Rocha, A., & Barata, J. (2013). A study of JADE’s messaging RTT

performance using distinct message exchange patterns. IECON Proceedings

(Industrial Electronics Conference), 7410–7415. doi:10.1109/IECON.2013.6700366

28. Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for

log processing. In Proceedings of the NetDB, pages 1-7, 2011.

29. Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad

Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a replicated

logging system with apache kafka. Proceedings of the VLDB Endowment,

8(12):1654-1655, 2015.

30. Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park, Jun Rao, and

Victor Yang Ye. Building linkedin's real-time activity data pipeline. IEEE Data Eng.

Bull., 35(2):33{45, 2012.

